
Practical Scientific Computing

in Python

John D. Hunter

Fernando Pérez

with contributions from

Perry Greenfield

Travis E. Oliphant

Prabhu Ramachandran





Contents

Chapter 1. Python for Scientific Computing 5
1.1. Who is using Python? 5
1.2. Advantages of Python 5
1.3. Mixed Language Programming 6
1.4. Getting started 7
1.5. An Introduction to Arrays 8
1.6. Exercises 14

Chapter 2. A whirlwind tour of python and the standard library 15
2.1. Hello Python 15
2.2. Python is a calculator 16
2.3. Accessing the standard library 17
2.4. Strings 19
2.7. The basic python data structures 22
2.9. The Zen of Python 24
2.11. Functions and classes 24
2.13. Files and file like objects 26

Chapter 3. A tour of IPython 29
3.1. Main IPython features 29
3.2. Effective interactive work 30
3.3. Access to the underlying Operating System 35
3.4. Access to an editor 38
3.5. Customizing IPython 38
3.6. Debugging and profiling with IPython 38
3.7. Embedding IPython into your programs 40
3.8. Integration with Matplotlib 44

Chapter 4. Introduction to numerix arrays 45

Chapter 5. Introduction to plotting with matplotlib / pylab 47
5.1. A bird’s eye view 47
5.2. A short pylab tutorial 48
5.3. Set and get introspection 51
5.4. A common interface to Numeric and numarray 54
5.5. Customizing the default behavior with the rc file 55
5.6. A quick tour of plot types 55
5.7. Images 55
5.8. Customizing text and mathematical expressions 57
5.9. Event handling: Tracking the mouse and keyboard 57

Chapter 6. A tour of SciPy 59
6.1. Introduction 59
6.2. Basic functions in scipy base and top-level scipy 61
6.3. Special functions (special) 64
6.4. Integration (integrate) 64

3



englishCHAPTER 0. CONTENTS

6.5. Optimization (optimize) 67
6.6. Interpolation (interpolate) 73
6.7. Signal Processing (signal) 78
6.8. Input/Output 83
6.9. Fourier Transforms 83
6.10. Linear Algebra 83
6.11. Statistics 91
6.12. Interfacing with the Python Imaging Library 91
6.13. Some examples 91

Chapter 7. 3D visualization with MayaVi 95
7.1. Introduction 95
7.2. Getting started 96
7.3. Using MayaVi 97
7.4. Using MayaVi from Python 107
7.5. Scripted examples 111

Chapter 8. 3D visualization with VTK 113
8.1. Hello world in VTK 113
8.4. Working with medical image data 115

Chapter 9. Interfacing with external libraries 119
9.1. weave 119
9.2. swig 128
9.3. f2py 128
9.4. Others 133
9.5. Distributing standalone applications 133

Bibliography 135

4



CHAPTER 1

Python for Scientific Computing

With material contributed by Perry Greenfield, Robert Jedrzejewski, Vicki Laidler and John Hunter

1.1. Who is using Python?

The use of Python in scientific computing is as wide as the field itself. A sampling of current
work is provided here to indicate the breadth of disciplines represented and the scale of the problems
addressed. The NASA Jet Propulsion Laboratory (JPL) uses Python as an interface language to
FORTRAN and C++ libraries which form a suite of tools for plotting and visualization of spacecraft
trajectory parameters in mission design and navigation. The Space Telescope Science Institute (STScI)
uses Python in many phases of their pipeline: scheduling Hubble data acquisitions, managing volumes
of data, and analyzing astronomical images [7]. The National Oceanic Atmospheric Administration
(NOAA) uses Python for a wide variety of scientific computing tasks including simple scripts to parse
and translate data files, prototyping of computational algorithms, writing user interfaces, web front
ends, and the development of models [27, 6, 29]. At the Fundamental Symmetries Lab at Princeton
University, Python is used to efficiently analyze large data sets from an experiment that searches for CPT
and Lorentz Violation using an atomic magnetometer [23, 22]. The Pediatric Clinical Electrophysiology
unit at The University of Chicago, which collects approximately 100GB of data per week, uses Python
to explore novel approaches to the localization and detection of epileptic seizures [19]. The Enthought
Corporation is using Python to build customized applications for oil exploration for the petroleum
industry. At the world’s largest radio telescopes, e.g., Arecibo and the Green Bank Telescope, Python
is used for data processing, modelling, and scripting high-performance computing jobs in order to search
for and monitor binary and millisecond pulsars in terabyte datasets [33, 32]. At the Computational
Genomics Laboratory at the Australian National University, researchers are using Python to build
a toolkit which enables the specification of novel statistical models of sequence evolution on parallel
hardware [20, 12]. Michel Sanner’s group at the Scripps Research Institute uses Python extensively to
build a suite of applications for molecular visualization and exploration of drug/molecule interactions
using virtual reality and 3D printing technology[36, 37]. Engineers at Google use Python in automation,
control and tuning of their computational grid, and use SWIG generated Python of their in-house C++
libraries in virtually all facets of their work [9, 39]. Many other use cases – ranging from animation
at Industrial Light and Magic, to space shuttle mission control, to grid monitoring and control at
Rackspace, to drug discovery, meteorology and air traffic control – are detailed in O’Reilly’s two volumes
of Python Success Stories [1, 2].

1.2. Advantages of Python

The canonical, ”Python is a great first language”, elicited, ”Python is a great last lan-
guage!” – Noah Spurrier

This quotation summarizes an important reason scientists migrate to Python as a programming lan-
guage. As a “great first language” Python has a simple, expressive syntax that is accessible to the
newcomer. “Python as executable pseudocode” reflects the fact that Python syntax mirrors the obvious
and intuitive pseudo-code syntax used in many journals [40]. As a great first language, it does not
impose a single programming paradigm on scientists, as Java does with object oriented programming,
but rather allows one to code at many levels of sophistication, including BASIC/FORTRAN/Matlab
style procedural programming familiar to many scientists. Here is the canonical first program “hello
world” in Python:

5



1.3. MIXED LANGUAGE PROGRAMMINGenglishCHAPTER 1. PYTHON FOR SCIENTIFIC COMPUTING

# Python

print ’hello world’

in Java

// java

class myfirstjavaprog

{

public static void main(String args[])

{

System.out.println("Hello World!");

}

}

In addition to being accessible to new programmers and scientists, Python is powerful enough to manage the
complexity of large applications, supporting functional programming, object orienting programming, generic
programming and metaprogramming. That Python supports these paradigms suggests why it is also a “great
last language”: as one increases their programming sophistication, the language scales naturally. By contrast,
commercial languages like Matlab and IDL, which also support a simple syntax for simple programs do not scale
well to complex programming tasks.

The built-in Python data-types and standard library provide a powerful platform in every distribution
[35, ?]. The standard data types encompass regular and arbitrary length integers, complex numbers, floating
point numbers, strings, lists, associative arrays, sets and more. In the standard library included with every
Python distribution are modules for regular expressions, data encodings, multimedia formats, math, networking
protocols, binary arrays and files, and much more. Thus one can open a file on a remote web server and work
with it as easily as with a local file

# this 3 line script downloads and prints the yahoo web site

from urllib import urlopen

for line in urlopen(’http://yahoo.com’).readlines():

print line

Complementing these built-in features, Python is also readily extensible, giving it a wealth of libraries for
scientific computing that have been in development for many years [13, 14]. Numeric Python supports large
array manipulations, math, optimized linear algebra, efficient Fourier transforms and random numbers. scipy is
a collection of Python wrappers of high performance FORTRAN code (eg LAPACK, ODEPACK) for numerical
analysis [3]. IPython is a command shell ala Mathematica, Matlab and IDL for interactive programming, data
exploration and visualization with support for command history, completion, debugging and more. Matplotlib
is a 2D graphics package for making publication quality graphics with a Matlab compatible syntax that is also
embeddable in applications. f2py, SWIG, weave, and pyrex are tools for rapidly building Python interfaces to
high performance compiled code, MayaVi is a user friendly graphical user interface for 3D visualizations built
on top of the state-of-the-art Visualization Toolkit [38]. pympi, pypar, pyro, scipy.cow, and pyxg are tools for
cluster building and doing parallel, remote and distributed computations. This is a sampling of general purpose
libraries for scientific computing in Python, and does not begin to address the many high quality, domain specific
libraries that are also available.

All of the infrastructure described above is open source software that is freely distributable for academic
and commercial use. In both the educational and scientific arenas, this is a critical point. For education, this
platform provides students with tools that they can take with them outside the classroom to their homes and
jobs and careers beyond. By contrast, the use commercial tools such as Matlab and IDL limits access to major
institutions. For scientists, the use of open source tools is consistent with the scientific principle that all of the
steps in an analysis or simulation should be open for review, and with the principle of reproducible research
[11].

1.3. Mixed Language Programming

The programming languages of each generation evolve in part to fix the problems of those that came before
[10]. FORTRAN, the original high level language of scientific computing [34], was designed to allow scientists to
express code at a level closer to the language of the problem domain. ALGOL and its successor Pascal, widely
used in education in the 1970s, were designed to alleviate some of the perceived problems with FORTRAN
and to create a language with a simpler and more expressive syntax [5, 26]. Object oriented programming
languages evolved to allow a closer correspondence between the code and the physical system it models [16],
and C++ provided a relatively high performance object orientated implementation compatible with the popular
C programming language [42, 41]. But implementing object orientation efficiently requires programmers stay

6



englishCHAPTER 1. PYTHON FOR SCIENTIFIC COMPUTING 1.4. GETTING STARTED

Figure 1.4.1. Loading ASCII data and displaying with plot

close to the machine, managing memory and pointers, and this created a lot of complexity in programs while
limiting portability. Interpreted languages such as Tcl, Perl, Python, and Java evolved to manage some of the
low-level and platform specific details, making programs easier to write and maintain, but with a performance
penalty [28, 4]. For many scientists, however, pure object oriented systems like Java are unfamiliar, and
languages like Matlab and Python provide the safety, portability and ease of use of an interpreted language
without imposing an object oriented approach to coding [15, 17].

The result of these several decades is that there are many platforms for scientific computing in use to-
day. The number of man hours invested in numerical methods in FORTRAN, visualization libraries in C++,
bioinformatics toolkits in Perl, object frameworks in Java, domain specific toolkits in Matlab, etc. . . requires
an approach that integrates this work. Python is the language that provides maximal integration with other
languages, with tools for transparently and semi-automatically interfacing with FORTRAN, C, C++, Java,
.NET, Matlab, and Mathematica code [18, 9]. In our view, the ability to work seamlessly with code from many
languages is the present and the future of scientific computing, and Python effectively integrates these languages
into a single environment.

1.4. Getting started

We’ll get started with python by introducing arrays and plotting by working with a simple ASCII text file
mydata.dat of two columns; the first column contains the times that some measurement was acquired, and the
second column are the sampled voltages at that time. The file looks like

0.0000 0.4911

0.0500 0.5012

0.1000 0.7236

0.1500 1.1756

... and so on

While it would be easy enough to process this file by writing a python function to do it, there is no need to,
since the matplotlib pylab module has a matlab-compatible load function for loading ASCII array data (Figure
1.4.1). To complete these exercises, you should have ipython and matplotlib installed, and start ipython in
pylab mode with

> ipython -pylab

Listing 1.1

In [1]: X = load(’data/ascii_data.dat’) # X is an array

In [2]: t = X[:,0] # extract the first column

In [3]: v = X[:,1] # extract the second column

7



1.5. ARRAYS englishCHAPTER 1. PYTHON FOR SCIENTIFIC COMPUTING

Figure 1.4.2. Loading binary image data and displaying with imshow

In [4]: len(t)

Out [4]: 20

In [5]: len(v)

Out [5]: 20

In [6]: plot(t,v) # plot the data

Out [6]: [<matplotlib.lines.Line2D instance at 0xb65921ac >]

It is also easy to load data from binary files. In the example below, we have some image data in raw binary
string format. The image is 256x256 pixels, and each pixel is a 2 byte integer. We read this into a string using
python’s file function – the ’rb’ flag says to open the file in read/binary mode. We can then use the numerix
fromstring method to convert this to an array, passing the type of the data (Int16) as an argument. We
reshape the array by changing the array shape attribute to 256 by 256, and pass this off to the matplotlib pylab
command imshow for plotting. matplotlib has a number of colormaps, and the default one is jet; the data are
automatically normalized and colormaps producing the image in Figure 1.4.2

Listing 1.2

# open a file as "read binary" and read it into a string

In [1]: s = file(’data/images/r1025.ima’, ’rb’).read()

# the string is length 256*256*2 = 131072

In [2]: len(s)

Out [2]: 131072

# the data are 2 byte / 16 bit integers

# fromstring converts them to array

In [3]: im = nx.fromstring(s, nx.Int16)

# reshape the array to 256 x256

In [4]: im.shape = 256 ,256

# and plot it with matplotlib ’s imshow function

In [5]: imshow(im)

Out [5]: <matplotlib.image.AxesImage instance at 0xb659230c >

1.5. An Introduction to Arrays

1.5.1. Creating arrays. There are a few different ways to create arrays besides modules that obtain
arrays from data files such

> > > x = zeros((20,30))

8



englishCHAPTER 1. PYTHON FOR SCIENTIFIC COMPUTING 1.5. ARRAYS

creates a 20x30 array of zeros (default integer type; details on how to specify other types will follow). Note that
the dimensions (“shape” in numarray parlance) are specified by giving the dimensions as a comma-separated list
within parentheses. The parentheses aren’t necessary for a single dimension. As an aside, the parentheses used
this way are being used to specify a Python tuple; more will be said about those in a later tutorial. For now
you only need to imitate this usage.

Likewise one can create an array of 1’s using the ones() function.
The arange() function can be used to create arrays with sequential values. E.g.,

> > > arange(10)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Note that that the array defaults to starting with a 0 value and does not include the value specified (though
the array does have a length that corresponds to the argument)

Other variants:

> > > arange(10.)

array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9])

> > > arange(3,10)

array([3, 4, 5, 6, 7, 8, 9])

> > > arange(1., 10., 1.1) # note trickiness

array([1. , 2.1, 3.2, 4.3, 5.4, 6.5, 7.6, 8.7, 9.8])

Finally, one can create arrays from literal arguments:

> > > print array([3,1,7])

[3 1 7]

> > > print array([[2,3],[4,4]])

[[2 3]

[4 4]]

The brackets, like the parentheses in the zeros example above have a special meaning in Python which will be
covered later (Python lists). For now, just mimic the syntax used here.

1.5.2. Array numeric types. numarray supports all standard numeric types. The default integer matches
what Python uses for integers, usually 32 bit integers or what numarray calls Int32. The same is true for floats,
i.e., generally 64-bit doubles called Float64 in numarray. The default complex type is Complex64. Many of the
functions accept a type argument. For example

> > > zeros(3, Int8) # Signed byte

> > > zeros(3, type=UInt8) # Unsigned byte

> > > array([2,3], type=Float32)

> > > arange(4, type=Complex64)

The possible types are Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Float32, Float64,

Complex32, Complex64. To find out the type of an array use the .type() method. E.g.,

> > > arr.type()

Float32

To convert an array to a different type use the astype() method, e.g,

> > > a = arr.astype(Float64)

1.5.3. Printing arrays. Interactively, there are two common ways to see the value of an array. Like many
Python objects, just typing the name of the variable itself will print its contents (this only works in interactive
mode). You can also explicitly print it. The following illustrates both approaches:

> > > x = arange(10)

> > > x

array([0, 1, 2, 3, 4, 5, 6, 7, 8 9])

> > > print x

[0 1 2 3 4 5 6 7 8 9]

By default the array module limits the amount of an array that is printed out (to spare you the effects of printing
out millions of values). For example:

> > > x = arange(1000000)

print x

[ 0 1 2 ..., 999997 999998 999999]

9



1.5. ARRAYS englishCHAPTER 1. PYTHON FOR SCIENTIFIC COMPUTING

1.5.4. Indexing 1-D arrays. As with IDL and Matlab, there are many options for indexing arrays.

> > > x = arange(10)

> > > x

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Simple indexing:

> > > x[2] # 3rd element

2

Indexing is 0-based. The first value in the array is x[0]

Indexing from end:

> > > x[-2] # -1 represents the last element, -2 next to last...

8

Slices
To select a subset of an array:

> > > x[2:5]

array([2, 3, 4])

Note that the upper limit of the slice is not included as part of the subset! This is viewed as unexpected by
newcomers and a defect. Most find this behavior very useful after getting used to it (the reasons won’t be
given here). Also important to understand is that slices are views into the original array in the same sense that
references view the same array. The following demonstrates:

> > > y = x[2:5]

> > > y[0] = 99

> > > y

array([99, 3, 4])

> > > x

array([0, 1, 99, 3, 4, 5, 6, 7, 8, 9])

Changes to a slice will show up in the original. If a copy is needed use x[2:5].copy()

Short hand notation

> > > x[:5] # presumes start from beginning

array([ 0, 1, 99, 3, 4])

> > > x[2:] # presumes goes until end

array([99, 3, 4, 5, 6, 7, 8, 9])

> > > x[:] # selects whole dimension

array([0, 1, 99, 3, 4, 5, 6, 7, 8, 9])

Strides:

> > > x[2:8:3] # Stride every third element

array([99, 5])

Index arrays:

> > > x[[4,2,4,1]]

array([4, 99, 4, 1])

Using results of logical indexing

> > > x > 5

array([0,0,1,0,0,0,1,1,1,1], type=Bool)

> > > x[x>5]

array([99, 6, 7, 8, 9])

1.5.5. Indexing multidimensional arrays. Before describing this in detail it is very important to note
an item regarding multidimensional indexing that will certainly cause you grief until you become accustomed
to it: ARRAY INDICES USE THE OPPOSITE CONVENTION AS FORTRAN REGARDING ORDER OF
INDICES FOR MULTIDIMENSIONAL ARRAYS.

> > > im = arange(24)

> > > im.shape = 4,6

> > > im

array([[ 0, 1, 2, 3, 4, 5],

[ 6, 7, 8, 9, 10, 11],

[12, 13, 14, 15, 16, 17],

[18, 19, 20, 21, 22, 23]])

10



englishCHAPTER 1. PYTHON FOR SCIENTIFIC COMPUTING 1.5. ARRAYS

To emphasize the point made in the previous paragraph, the index that represents the most rapidly varying
dimension in memory is the 2nd index, not the first.

Partial indexing:

> > > im[1]

array([6, 7, 8, 9, 10, 11])

If only some of the indices for a multidimensional array are specified, then the result is an array with the shape
of the “leftover” dimensions, in this case, 1-dimensional. The 2nd row is selected, and since there is no index for
the column, the whole row is selected.

All of the indexing tools available for 1-D arrays apply to n-dimensional arrays as well (though combining
index arrays with slices is not currently permitted). To understand all the indexing options in their full detail,
read sections 4.6, 4.7 and 6 of the numarray manual.

1.5.6. Compatibility of dimensions. In operations involving combining (e.g., adding) arrays or assign-
ing them there are rules regarding the compatibility of the dimensions involved. For example the following is
permitted:

> > > x[:5] = 0

since a single value is considered “broadcastable” over a 5 element array. But this is not permitted:

> > > x[:5] = array([0,1,2,3])

since a 4 element array does not match a 5 element array.
The following explanation can probably be skipped by most on the first reading; it is only important to know

that rules for combining arrays of different shapes are quite general. It is hard to precisely specify the rules
without getting a bit confusing, but it doesn’t take long to get a good intuitive feeling for what is and isn’t
permitted. Here’s an attempt anyway: The shapes of the two involved arrays when aligned on their trailing
part must be equal in value or one must have the value one for that dimension. The following pairs of shapes
are compatible:

(5,4):(4,) -> (5,4)

(5,1):(4,) -> (5,4)

(15,3,5):(15,1,5) -> (15,3,5)

(15,3,5):(3,5) -> (15,3,5)

(15,1,5):(3,1) -> (15,3,5)

so that one can add arrays of these shapes or assign one to the other (in which case the one being assigned must
be the smaller shape of the two). For the dimensions that have a 1 value that are matched against a larger
number, the values in that dimension are simply repeated. For dimensions that are missing, the sub-array is
simply repeated for those. The following shapes are not compatible:

(3,4):(4,3)

(1,3):(4,)

Examples:

> > > x = zeros((5,4))

> > > x[:,:] = [2,3,2,3]

> > > x

array([[2, 3, 2, 3],

[2, 3, 2, 3],

[2, 3, 2, 3],

[2, 3, 2, 3],

[2, 3, 2, 3]])

> > > a = arange(3)

> > > b = a[:] # different array, same data (huh?)

> > > b.shape = (3,1)

> > > b

array([[0],

[1],

[2]])

> > > a*b # outer product

array([[0, 0, 0],

[0, 1, 2],

[0, 2, 4]])

11



1.5. ARRAYS englishCHAPTER 1. PYTHON FOR SCIENTIFIC COMPUTING

1.5.7. ufuncs. A ufunc (short for Universal Function) applies the same operation or function to all the
elements of an array independently. When two arrays are added together, the add ufunc is used to perform the
array addition. There are ufuncs for all the common operations and mathematical functions. More specialized
ufuncs can be obtained from add-on libraries. All the operators have corresponding ufuncs that can be used
by name (e.g., add for +). These are all listed in table below. Ufuncs also have a few very handy methods for
binary operators and functions whose use are demonstrated here.

> > > x = arange(9)

> > > x.shape = (3,3)

> > > x

array([0, 1, 2],

[3, 4, 5],

[6, 7, 8]])

> > > add.reduce(x) # sums along the first index

array([9, 12, 15])

> > > add.reduce(x, axis=1) # sums along the 2nd index

array([3, 12, 21])

> > > add.accumulate(x) # cumulative sum along the first index

array([[0, 1, 2],

[3, 5, 7],

[9, 12, 15]])

> > > multiply.outer(arange(3),arange(3))

array([[0, 0, 0],

[0, 1, 2],

[0, 2, 4]])

Standard Ufuncs (with corresponding symbolic operators, when they exist, shown in parentheses)
add (+) log greater (>)
subtract (-) log10 greater equal (>=)
multiply (*) cos less (<)
divide (/) arcos less equal (<=)
remainder (%) sin logical and
absolute, abs arcsin logical or
floor tan logical xor
ceil arctan bitwise and (&)
fmod cosh bitwise or (|)
conjugate sinh bitwise xor (ˆ)
minimum tanh bitwise not (˜)
maximum sqrt rshift (> >)
power (**) equal (==) lshift (< <)
exp not equal (!=)

Note that there are no corresponding Python operators for logical_and and logical_or. The Python and

and or operators are NOT equivalent to these respective ufuncs!

1.5.8. Array functions. There are many array utility functions. The following lists the more useful ones
with a one line description. See the numarray manual for details on how they are used. Arguments shown with
argument=value indicate what the default value is if called without a value for that argument.

all(a):: are all elements of array nonzero
allclose(a1, a2, rtol=1.e-5, atol=1.e-8 ):: true if all elements within specified amount (between two

arrays)
alltrue(a, axis=0 ):: are all elements nonzero along specified axis true.

any(a):: are any elements of an array nonzero
argmax(a, axis=-1 ), argmin(a,axis=-1 ):: return array with min/max locations for selected axis
argsort(a, axis=-1 ):: returns indices of results of sort on an array
choose(selector, population, clipmode=CLIP):: fills specified array by selecting corresponding values from

a set of arrays using integer selection array (population is a tuple of arrays; see tutorial 2)
clip(a, amin, amax):: clip values of array a at values amin, amax
dot(a1, a2 ):: dot product of arrays a1 & a2
compress(condition, a ,axis=0 ):: selects elements from array a based on boolean arraycondition
concatenate(arrays, axis=0 ):: concatenate arrays contained in sequence of arrays arrays

12



englishCHAPTER 1. PYTHON FOR SCIENTIFIC COMPUTING 1.5. ARRAYS

cumproduct(a, axis=0 ):: net cumulative product along specified axis
cumsum(a, axis=0 ):: accumulate array along specified axis
diagonal(a, offset=0, axis1=0, axis2=1 ):: returns diagonal of 2-d matrix with optional offsets.

fromfile(file, type, shape=None):: Use binary data in file to form new array of specified type.
fromstring(datastring, type, shape=None):: Use binary data in datastring to form new array of specified

shape and type
identity(n, type=None):: returns identity matrix of size nxn.
indices(shape, type=None):: generate array with values corresponding to position of selected index of

the array
innerproduct(a1, a2 ):: guess
matrixmultiply(a1, a2 ):: guess
outerproduct(a1, a2 ):: guess
product(a, axis=0 ):: net product of elements along specified axis
ravel(a):: creates a 1-d version of an array
repeat(a, repeats, axis=0 ):: generates new array with repeated copies of input array a
resize(a, shape):: replicate or truncate array to new shape
searchsorted(bin, a):: return indices of mapping values of an array a into a monotonic array bin
sometrue(a, axis=0 ):: are any elements along specified axis true
sort(a, axis=-1 ):: sort array elements along selected axis
sum(a, axis=0 ):: sum array along specified axis
swapaxes(a, axis1, axis2 ):: switch indices for axis of array (doesn’t actually move data, just maps indices

differently)
trace(a, offset=0, axis1=0, axis2=1 ):: compute trace of matrix a with optional offset.
transpose(a, axes=None):: transpose indices of array (doesn’t actually move data, just maps indices

differently)

where(a):: find “true” locations in array a

1.5.9. Array methods. Arrays have several methods. They are used as methods are with any object.
For example (using the array from the previous example):

> > > # sum all array elements

> > > x.sum() # the L indicates a Python Long integer

36L

The following lists all the array methods that exist for an array object a (a number are equivalent to array
functions; these have no summary description shown):

a.argmax(axis=-1):
a.argmin(axis=-1):
a.argsort(axis=-1):
a.astype(type):: copy array to specified numeric type
a.byteswap():: perform byteswap on data in place
a.byteswapped():: return byteswapped copy of array
a.conjugate():: complex conjugate
a.copy():: produce copied version of array (instead of view)
a.diagonal():
a.info():: print info about array
a.isaligned():: are data elements guaranteed aligned with memory?
a.isbyteswapped():: are data elements in native processor order?
a.iscontiguous():: are data elements contiguous in memory?
a.is_c_array():: are data elements aligned, not byteswapped, and contiguous?
a.is_fortran_contiguous():: are indicies defined to follow Fortran conventions?
a.is_f_array():: are indices defined to follow Fortran conventions and data are aligned and not byteswapped
a.itemsize():: size of data element in bytes
a.max(type=None):: maximum value in array
a.min():: minimum value in array
a.nelements():: total number of elements in array
a.new():: returns new array of same type and size (data uninitialized)
a.repeat(a,repeats,axis=0)::
a.resize(shape)::
a.size():: same as nelements
a.type():: returns type of array
a.typecode():: returns corresponding typecode character used by Numeric
a.tofile(file):: write binary data to file
a.tolist():: convert data to Python list format

13



1.6. EXERCISES englishCHAPTER 1. PYTHON FOR SCIENTIFIC COMPUTING

a.tostring():: copy binary data to Python string
a.transpose(axes=-1 ):: transpose array
a.stddev():: standard deviation
a.sum():: sum of all elements
a.swapaxes(axis1,axis2):
a.togglebyteorder():: change byteorder flag without changing actual data byteorder
a.trace():
a.view():: returns new array object using view of same data

1.5.10. Array attributes:
a.shape:: returns shape of array
a.flat:: returns view of array treating it as 1-dimensional. Doesn’t work if array is not contiguous
a.real:: return real component of array (exists for all types)
a.imag, a.imaginary:: return imaginary component (exists only for complex types)

1.6. Exercises

Exercise 1.7. Load the binary image shown in Figure1.4.2. What is the mean pixel value, what are the
standard deviation of pixel values? Sum over the rows and make a bar plot for the summated intensity across
rows. Do the same for columns. Make a histogram of all the data in the image. (Hint – see nx.mlab.mean,
nx.mlab.std, pylab.bar and pylab.hist)

Example 1.7.1. this is another test

this is a test

14



CHAPTER 2

A whirlwind tour of python and the standard library

This is a quick-and-dirty introduction to the python language for the impatient scientist. There are many
top notch, comprehensive introductions and tutorials for python. For absolute beginners, there is the Python
Beginner’s Guide.1 The official Python Tutorial can be read online2 or downloaded3 in a variety of formats.
There are over 100 python tutorials collected online.4

There are also many excellent books. Targetting newbies is Mark Pilgrim’s Dive into Python which in avail-
able in print and for free online5, though for absolute newbies even this may be too hard [31]. For experienced
programmers, David Beasley’s Python Essential Reference is an excellent introduction to python, but is a bit
dated since it only covers python2.1 [8]. Likwise Alex Martelli’s Python in a Nutshell is highly regarded and a
bit more current – a 2nd edition is in the works[24]. And The Python Cookbook is an extremely useful collection
of python idioms, tips and tricks [25].

But the typical scientist I encounter wants to solve a specific problem, eg, to make a certain kind of graph,
to numerically integrate an equation, or to fit some data to a parametric model, and doesn’t have the time or
interest to read several books or tutorials to get what they want. This guide is for them: a short overview of
the language to help them get to what they want as quickly as possible. We get to advanced material pretty
quickly, so it may be touch sledding if you are a python newbie. Take in what you can, and if you start getting
dizzy, skip ahead to the next section; you can always come back to absorb more detail later, after you get your
real work done.

2.1. Hello Python

Python is a dynamically typed, object oriented, interpreted language. Interpreted means that your program
interacts with the python interpreter, similar to Matlab, Perl, Tcl and Java, and unlike FORTRAN, C, or C++
which are compiled. So let’s fire up the python interpreter and get started. I’m not going to cover installing
python – it’s standard on most linux boxes and for windows there is a friendly GUI installer. To run the python
interpreter, on windows, you can click Start->All Programs->Python 2.4->Python (command line) or better
yet, install ipython, a python shell on steroids, and use that. On linux / unix systems, you just need to type
python or ipython at the command line. The > > > is the default python shell prompt, so don’t type it in the
examples below

> > > print ’hello world’

hello world

As this example shows, hello world in python is pretty easy – one common phrase you hear in the python
community is that “it fits your brain”. – the basic idea is that coding in python feels natural. Compare python’s
version with hello world in C++

// C++

#include <iostream>

int main ()

{

std::cout < < "Hello World" < < std::endl;

return 0;

}

1http://www.python.org/moin/BeginnersGuide
2http://docs.python.org/tut/tut.html
3http://docs.python.org/download.html
4http://www.awaretek.com/tutorials.html
5http://diveintopython.org/toc/index.html

15



2.2. CALCULATOR englishCHAPTER 2. PYTHON INTRO

2.2. Python is a calculator

Aside from my daughter’s solar powered cash-register calculator, Python is the only calculator I use. From
the python shell, you can type arbitrary arithmetic expressions.

> > > 2+2

4

> > > 2**10

1024

> > > 10/5

2

> > > 2+(24.3 + .9)/.24

107.0

> > > 2/3

0

The last line is a standard newbie gotcha – if both the left and right operands are integers, python returns an
integer. To do floating point division, make sure at least one of the numbers is a float

> > > 2.0/3

0.66666666666666663

The distinction between integer and floating point division is a common source of frustration among newbies
and is slated for destruction in the mythical Python 3000.6 Since default integer division will be removed in
the future, you can invoke the time machine with the from __future__ directives; these directives allow python
programmers today to use features that will become standard in future releases but are not included by default
because they would break existing code. From future directives should be among the first lines you type in
your python code if you are going to use them, otherwise they may not work. The future division operator will
assume floating point division by default,7and provides another operator // to do classic integer division.

> > > from __future__ import division

> > > 2/3

0.66666666666666663

> > > 2//3

0

python has four basic numeric types: int, long, float and complex, but unlike C++, BASIC, FORTRAN or Java,
you don’t have to declare these types. python can infer them

> > > type(1)

<type ’int’>

> > > type(1.0)

<type ’float’>

> > > type(2**200)

<type ’long’>

2200is a huge number!

> > > 2**200

1606938044258990275541962092341162602522202993782792835301376L

but python will blithely compute it and much larger numbers for you as long as you have CPU and memory to
handle them. The integer type, if it overflows, will automatically convert to a python long (as indicated by the
appended L in the output above) and has no built-in upper bound on size, unlike C/C++ longs.

Python has built in support for complex numbers. Eg, we can verify i2 = −1

> > > x = complex(0,1)

> > > x*x

(-1+0j)

To access the real and imaginary parts of a complex number, use the real and imag attributes

6Python 3000 is a future python release that will clean up several things that Guido considers to be warts.
7You may have noticed that 2/3 was represented as 0.66666666666666663 and not 0.66666666666666666 as might be
expected. This is because computers are binary calculators, and there is no exact binary representation of 2/3, just as
there is no exact binary representation of 0.1

> > > 0.1

0.10000000000000001

Some languages try and hide this from you, but python is explicit.

16



englishCHAPTER 2. PYTHON INTRO 2.3. STANDARD LIBRARY

> > > x.real

0.0

> > > x.imag

1.0

If you come from other languages like Matlab, the above may be new to you. In matlab, you might do something
like this (> > is the standard matlab shell prompt)

> > x = 0+j

x =

0.0000 + 1.0000i

> > real(x)

ans =

0

> > imag(x)

ans =

1

That is, in Matlab, you use a function to access the real and imaginary parts of the data, but in python these
are attributes of the complex object itself. This is a core feature of python and other object oriented languages:
an object carries its data and methods around with it. One might say: “a complex number knows it’s real and
imaginary parts” or “a complex number knows how to take its conjugate”, you don’t need external functions for
these operations

> > > x.conjugate

<built-in method conjugate of complex object at 0xb6a62368>

> > > x.conjugate()

-1j

On the first line, I just followed along from the example above with real and imag and typed x.conjugate and
python printed the representation <built-in method conjugate of complex object at 0xb6a62368>. This
means that conjugate is a method, a.k.a a function, and in python we need to use parentheses to call a function.
If the method has arguments, like the x in sin(x), you place them inside the parentheses, and if it has no
arguments, like conjugate, you simply provide the open and closing parentheses. real, imag and conjugate

are attributes of the complex object, and conjugate is a callable attribute, known as a method.
OK, now you are an object oriented programmer. There are several key ideas in object oriented program-

ming, and this is one of them: an object carries around with it data (simple attributes) and methods (callable
attributes) that provide additional information about the object and perform services. It’s one stop shopping –
no need to go to external functions and libraries to deal with it – the object knows how to deal with itself.

2.3. Accessing the standard library

Arithmetic is fine, but before long you may find yourself tiring of it and wanting to compute logarithms
and exponents, sines and cosines

> > > log(10)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: name ’log’ is not defined

These functions are not built into python, but don’t despair, they are built into the python standard library.
To access a function from the standard library, or an external library for that matter, you must import it.

> > > import math

> > > math.log(10)

2.3025850929940459

> > > math.sin(math.pi)

1.2246063538223773e-16

Note that the default log function is a base 2 logarithm (use math.log10 for base 10 logs) and that floating
point math is inherently imprecise, since analyticallysin(π) = 0.

It’s kind of a pain to keep typing math.log and math.sin and math.pi, and python is accomodating. There
are additional forms of import that will let you save more or less typing depending on your desires

# Appreviate the module name: m is an alias

> > > import math as m

> > > m.cos(2*m.pi)

1.0

17



2.3. STANDARD LIBRARY englishCHAPTER 2. PYTHON INTRO

# Import just the names you need

> > > from math import exp, log

> > > log(exp(1))

1.0

# Import everything - use with caution!

> > > from math import *

> > > sin(2*pi*10)

-2.4492127076447545e-15

To help you learn more about what you can find in the math library, python has nice introspection capabilities
– introspection is a way of asking an object about itself. For example, to find out what is available in the math
library, we can get a directory of everything available with the dir command8

> > > dir(math)

[’__doc__’, ’__file__’, ’__name__’, ’acos’, ’asin’, ’atan’, ’atan2’, ’ceil’, ’cos’, ’cosh’, ’degrees’, ’e’, ’exp’, ’fabs’, ’floor’, ’fmod’, ’frexp’, ’hypot’, ’ldexp’, ’log’, ’log10’, ’modf’, ’pi’, ’pow’, ’radians’, ’sin’, ’sinh’, ’sqrt’, ’tan’, ’tanh’]

This gives us just a listing of the names that are in the math module – they are fairly self descriptive, but if
you want more, you can call help on any of these functions for more information

> > > help(math.sin)

Help on built-in function sin:

sin(...)

sin(x)

Return the sine of x (measured in radians).

and for the whole math library

> > > help(math)

Help on module math:

NAME

math

FILE

/usr/local/lib/python2.3/lib-dynload/math.so

DESCRIPTION

This module is always available. It provides access to the

mathematical functions defined by the C standard.

FUNCTIONS

acos(...)

acos(x)

Return the arc cosine (measured in radians) of x.

asin(...)

asin(x)

Return the arc sine (measured in radians) of x.

And much more which is snipped. Likewise, we can get information on the complex object in the same way

> > > x = complex(0,1)

> > > dir(x)

[’__abs__’, ’__add__’, ’__class__’, ’__coerce__’, ’__delattr__’, ’__div__’, ’__divmod__’, ’__doc__’, ’__eq__’, ’__float__’, ’__floordiv__’, ’__ge__’, ’__getattribute__’, ’__getnewargs__’, ’__gt__’, ’__hash__’, ’__init__’, ’__int__’, ’__le__’, ’__long__’, ’__lt__’, ’__mod__’, ’__mul__’, ’__ne__’, ’__neg__’, ’__new__’, ’__nonzero__’, ’__pos__’, ’__pow__’, ’__radd__’, ’__rdiv__’, ’__rdivmod__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__rfloordiv__’, ’__rmod__’, ’__rmul__’, ’__rpow__’, ’__rsub__’, ’__rtruediv__’, ’__setattr__’, ’__str__’, ’__sub__’, ’__truediv__’, ’conjugate’, ’imag’, ’real’]

Notice that called dir or help on the math module, the math.sin function, and the complex number x. That’s
because modules, functions and numbers are all objects, and we use the same object introspection and help
capabilites on them. We can find out what type of object they are by calling type on them, which is another
function in python’s introspection arsenal

8In addition to the introdpection and help provided in the python interpreter, the official documentation of the python
standard library is very good and up-to-date http://docs.python.org/lib/lib.html .

18



englishCHAPTER 2. PYTHON INTRO 2.4. STRINGS

> > > type(math)

<type ’module’>

> > > type(math.sin)

<type ’builtin_function_or_method’>

> > > type(x)

<type ’complex’>

Now, you may be wondering: what were all those god-awful looking double underscore methods, like __abs__

and __mul__ in the dir listing of the complex object above? These are methods that define what it means
to be a numeric type in python, and the complex object implements these methods so that complex numbers
act like the way should, eg __mul__ implements the rules of complex multiplication. The nice thing about this
is that python specifies an application programming interface (API) that is the definition of what it means to
be a number in python. And this means you can define your own numeric types, as long as you implement
the required special double underscore methods for your custom type. double underscore methods are very
important in python; although the typical newbie never sees them or thinks about them, they are there under
the hood providing all the python magic, and more importantly, showing the way to let you make magic.

2.4. Strings

We’ve encountered a number of types of objects above: int, float, long, complex, method/function and
module. We’ll continue our tour with an introduction to strings, which are critical components of almost every
program. You can create strings in a number of different ways, with single quotes, double quotes, or triple
quotes – this diversity of methods makes it easy if you need to embed string characters in the string itself

# single, double and triple quoted strings

> > > s = ’Hi Mom!’

> > > s = "Hi Mom!"

> > > s = """Porky said, "That’s all folks!" """

You can add strings together to concatenate them

# concatenating strings

> > > first = ’John’

> > > last = ’Hunter’

> > > first+last

’JohnHunter’

or call string methods to process them: upcase them or downcase them, or replace one character with another

# string methods

> > > last.lower()

’hunter’

> > > last.upper()

’HUNTER’

> > > last.replace(’h’, ’p’)

’Hunter’

> > > last.replace(’H’, ’P’)

’Punter’

Note that in all of these examples, the string last is unchanged. All of these methods operate on the string and
return a new string, leaving the original unchanged. In fact, python strings cannot be changed by any python
code at all: they are immutable (unchangeable). The concept of mutable and immutable objects in python is
an important one, and it will come up again, because only immutable objects can be used as keys in python
dictionaries and elements of python sets.

You can access individual characters, or slices of the string (substrings), using indexing. A string in
sequence of characters, and strings implement the sequence protocol in python – we’ll see more examples of
python sequences later – and all sequences have the same syntax for accessing their elements. Python uses
0 based indexing which means the first element is at index 0; you can use negative indices to access the last
elements in the sequence

# string indexing

> > > last = ’Hunter’

> > > last[0]

’H’

> > > last[1]

’u’

19



2.4. STRINGS englishCHAPTER 2. PYTHON INTRO

> > > last[-1]

’r’

To access substrings, or generically in terms of the sequence protocol, slices, you use a colon to indicate a range

# string slicing

> > > last[0:2]

’Hu’

> > > last[2:4]

’nt’

As this example shows, python uses “one-past-the-end” indexing when defining a range; eg, in the range
indmin:indmax, the element of imax is not included. You can use negative indices when slicing too; eg, to
get everything before the last character

> > > last[0:-1]

’Hunte’

You can also leave out either the min or max indicator; if they are left out, 0 is assumed to be the indmin and
one past the end of the sequence is assumed to be indmax

> > > last[:3]

’Hun’

> > > last[3:]

’ter’

There is a third number that can be placed in a slice, a step, with syntax indmin:indmax:step; eg, a step of 2
will skip every second letter

> > > last[1:6:2]

’utr’

Although this may be more that you want to know about slicing strings, the time spent here is worthwhile.
As mentioned above, all python sequences obey these rules. In addition to strings, lists and tuples, which are
built-in python sequence data types and are discussed in the next section, the numeric arrays widely used in
scientific computing also implement the sequence protocol, and thus have the same slicing rules.

Exercise 2.5. What would you expect last[:] to return?

One thing that comes up all the time is the need to create strings out of other strings and numbers, eg
to create filenames from a combination of a base directory, some base filename, and some numbers. Scientists
like to create lots of data files like and then write code to loop over these files and analyze them. We’re going
to show how to do that, starting with the newbie way and progressively building up to the way of python zen
master. All of the methods below work, but the zen master way will more efficient, more scalable (eg to larger
numbers of files) and cross-platform.9 Here’s the newbie way: we also introduce the for-loop here in the spirit
of diving into python – note that python uses whitespace indentation to delimit the for-loop code block

# The newbie way

for i in (1,2,3,4):

fname = ’data/myexp0’ + str(i) + ’.dat’

print fname

Now as promised, this will print out the 4 file names above, but it has three flaws: it doesn’t scale to 10 or more
files, it is inefficient, and it is not cross platform. It doesn’t scale because it hard-codes the ’0’ after myexp, it is
inefficient because to add several strings requires the creation of temporary strings, and it is not cross-platform
because it hard-codes the directory separator ’/’.

# On the path to elightenment

for i in (1,2,3,4):

fname = ’data/myexp%02d.dat’%i

print fname

This example uses string interpolation, the funny % thing. If you are familiar with C programming, this will
be no surprise to you (on linux/unix systems do man sprintf at the unix shell). The percent character is a
string formatting character: %02d means to take an integer (the d part) and print it with two digits, padding
zero on the left (the %02 part). There is more to be said about string interpolation, but let’s finish the job at
hand. This example is better than the newbie way because is scales up to files numbered 0-99, and it is more
efficient because it avoids the creation of temporary strings. For the platform independent part, we go to the

9“But it works” is a common defense of bad code; my rejoinder to this is “A computer scientist is someone who fixes things
that aren’t broken”.

20



englishCHAPTER 2. PYTHON INTRO 2.4. STRINGS

python standard library os.path, which provides a host of functions for platform-independent manipulations
of filenames, extensions and paths. Here we use os.path.join to combine the directory with the filename in a
platform independent way. On windows, it will use the windows path separator ’\’ and on unix it will use ’/’.

# the zen master approach

import os

for i in (1,2,3,4):

fname = os.path.join(’data’, ’myexp%02d.dat’%i)

print fname

Exercise 2.6. Suppose you have data files named like

data/2005/exp0100.dat

data/2005/exp0101.dat

data/2005/exp0102.dat

...

data/2005/exp1000.dat

Write the python code that iterates over these files, constructing the filenames as strings in using os.path.join

to construct the paths in a platform-independent way. Hint : read the help for os.path.join!
OK, I promised to torture you a bit more with string interpolation – don’t worry, I remembered. The ability

to properly format your data when printing it is crucial in scientific endeavors: how many signficant digits do
you want, do you want to use integer, floating point representation or exponential notation? These three choices
are provided with %d, %f and %e, with lots of variations on the theme to indicate precision and more

> > > ’warm for %d minutes at %1.1f C’ % (30, 37.5)

’warm for 30 minutes at 37.5 C’

> > > ’The mass of the sun is %1.4e kg’% (1.98892*10**30)

’The mass of the sun is 1.9889e+30 kg’

There are two string methods, split and join, that arise frequenctly in Numeric processing, specifically in the
context of processing data files that have comma, tab, or space separated numbers in them. split takes a single
string, and splits it on the indicated character to a sequence of strings. This is useful to take a single line of
space or comma separated values and split them into individual numbers

# s is a single string and we split it into a list of strings

# for further processing

> > > s = ’1.0 2.0 3.0 4.0 5.0’

> > > s.split(’ ’)

[’1.0’, ’2.0’, ’3.0’, ’4.0’, ’5.0’]

The return value, with square brackets, indicates that python has returned a list of strings. These individual
strings need further processing to convert them into actual floats, but that is the first step. The conversion to
floats will be discussed in the next session, when we learn about list comprehensions. The converse method is
join, which is often used to create string output to an ASCII file from a list of numbers. In this case you want
to join a list of numbers into a single line for printing to a file. The example below will be clearer after the next
section, in which lists are discussed

# vals is a list of floats and we convert it to a single

# space separated string

> > > vals = [1.0, 2.0, 3.0, 4.0, 5.0]

> > > ’ ’.join([str(val) for val in vals])

’1.0 2.0 3.0 4.0 5.0’

There are two new things in the example above. One, we called the join method directly on a string itself,
and not on a variable name. Eg, in the previous examples, we always used the name of the object when
accessing attributes, eg x.real or s.upper(). In this example, we call the join method on the string which is a
single space. The second new feature is that we use a list comprehension [str(val) for val in vals] as the
argument to join. join requires a sequence of strings, and the list comprehension converts a list of floats to a
strings. This can be confusing at first, so don’t dispair if it is. But it is worth bringing up early because list
comprehensions are a very useful feature of python. To help elucidate, compare vals, which is a list of floats,
with the conversion of vals to a list of strings using list comprehensions in the next line

# converting a list of floats to a list of strings

> > > vals

[1.0, 2.0, 3.0, 4.0, 5.0]

> > > [str(val) for val in vals]

21



2.7. DATA STRUCTURES englishCHAPTER 2. PYTHON INTRO

[’1.0’, ’2.0’, ’3.0’, ’4.0’, ’5.0’]

2.7. The basic python data structures

Strings, covered in the last section, are sequences of characters. python has two additional built-in sequence
types which can hold arbitrary elements: tuples and lists. tuples are created using parentheses, and lists are
created using square brackets

# a tuple and a list of elements of the same type

# (homogeneous)

> > > t = (1,2,3,4) # tuple

> > > l = [1,2,3,4] # list

Both tuples and lists can also be used to hold elements of different types

# a tuple and list of int, string, float

> > > t = (1,’john’, 3.0)

> > > l = [1,’john’, 3.0]

Tuples and lists have the same indexing and slicing rules as each other, and as string discussed above, because
both implement the python sequence protocol, with the only difference being that tuple slices return tuples
(indicated by the parentheses below) and list slices return lists (indicated by the square brackets)

# indexing and slicing tuples and lists

> > > t[0]

1

> > > l[0]

1

> > > t[:-1]

(1, ’john’)

> > > l[:-1]

[1, ’john’]

So why the difference between tuples and lists? A number of explanations have been offered on the mailing
lists, but the only one that makes a difference to me is that tuples are immutable, like strings, and hence can
be used as keys to python dictionaries and included as elements of sets, and lists are mutable, and cannot. So
a tuple, once created, can never be changed, but a list can. For example, if we try to reassign the first element
of the tuple above, we get an error

> > > t[0] = ’why not?’

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object doesn’t support item assignment

But the same operation is perfectly accetable for lists

> > > l[0] = ’why not?’

> > > l

[’why not?’, ’john’, 3.0]

lists also have a lot of methods, tuples have none, save the special double underscore methods that are required
for python objects and sequences

# tuples contain only hidden double underscore methods

> > > dir(t)

[’__add__’, ’__class__’, ’__contains__’, ’__delattr__’, ’__doc__’, ’__eq__’, ’__ge__’, ’__getattribute__’, ’__getitem__’, ’__getnewargs__’, ’__getslice__’, ’__gt__’, ’__hash__’, ’__init__’, ’__iter__’, ’__le__’, ’__len__’, ’__lt__’, ’__mul__’, ’__ne__’, ’__new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__rmul__’, ’__setattr__’, ’__str__’]

# but lists contain other methods, eg append, extend and

# reverse

> > > dir(l)

[’__add__’, ’__class__’, ’__contains__’, ’__delattr__’, ’__delitem__’, ’__delslice__’, ’__doc__’, ’__eq__’, ’__ge__’, ’__getattribute__’, ’__getitem__’, ’__getslice__’, ’__gt__’, ’__hash__’, ’__iadd__’, ’__imul__’, ’__init__’, ’__iter__’, ’__le__’, ’__len__’, ’__lt__’, ’__mul__’, ’__ne__’, ’__new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__rmul__’, ’__setattr__’, ’__setitem__’, ’__setslice__’, ’__str__’, ’append’, ’count’, ’extend’, ’index’, ’insert’, ’pop’, ’remove’, ’reverse’, ’sort’]

Many of these list methods change, or mutate, the list, eg append adds an element to the list: extend extends
the list with a sequence of elements, sort sorts the list in place, reverse reverses it in place, pop takes an
element off the list and returns it.

We’ve seen a couple of examples of creating a list above – let’s look at some more using list methods

> > > x = [] # create the empty list

> > > x.append(1) # add the integer one to it

> > > x.extend([’hi’, ’mom’]) # append two strings to it

> > > x

22



englishCHAPTER 2. PYTHON INTRO 2.7. DATA STRUCTURES

[1, ’hi’, ’mom’]

> > > x.reverse() # reverse the list, in place

> > > x

[’mom’, ’hi’, 1]

> > > len(x)

3

We mentioned list comprehensions in the last section when discussing string methods. List comprehensions are
a way of creating a list using a for loop in a single line of python. Let’s create a list of the perfect cubes from
1 to 10, first with a for loop and then with a list comprehension. The list comprehension code will not only be
shorter and more elegant, it can be much faster (the dots are the indentation block indicator from the python
shell and should not be typed)

# a list of perfect cubes using a for-loop

> > > cubes = []

> > > for i in range(1,10):

... cubes.append(i**3)

...

> > > cubes

[1, 8, 27, 64, 125, 216, 343, 512, 729]

# functionally equivalent code using list comprehensions

> > > cubes = [i**3 for i in range(1,10)]

> > > cubes

[1, 8, 27, 64, 125, 216, 343, 512, 729]

The list comprehension code is faster because it all happens at the C level. In the simple for-loop version, the
python expression which appends the cube of i has to be evaluated by the python interpreter for each element
of the loop. In the list comprehension example, the single line is parsed once and executed at the C level. The
difference in speed can be considerable, and the list comprehension example is shorter and more elegant to boot.

The remaining essential built-in data strucuture in python is the dictionary, which is an associative array
that maps arbitrary immutable objects to arbitrary objects. int, long, float, string and tuple are all immutable
and can be used as keys; to a dictionary list and dict are mutable and cannot. A dictionary takes one kind of
object as the key, and this key points to another object which is the value. In a contrived but easy to comprehent
examples, one might map names to ages

> > > ages = {} # create an empty dict

> > > ages[’john’] = 36

> > > ages[’fernando’] = 33

> > > ages # view the whole dict

{’john’: 36, ’fernando’: 33}

> > > ages[’john’]

36

> > > ages[’john’] = 37 # reassign john’s age

> > > ages[’john’]

37

Dictionary lookup is very fast; Tim Peter’s once joked that any python program which uses a dictionary is
automatically 10 times faster than any C program, which is of course false, but makes two worthy points in
jest: dictionary lookup is fast, and dictionaries can be used for important optimizations, eg, creating a cache
of frequently used values. As a simple eaxample, suppose you needed to compute the product of two numbers
between 1 and 100 in an inner loop – you could use a dictionary to cache the cube of all odd of numbers < 100;
if you were inteterested in all numbers, you might simply use a list to store the cached cubes – I am cacheing
only the odd numbers to show you how a dictionary can be used to represent a sparse data structure

> > > cubes = dict([ ( i, i**3 ) for i in range(1,100,2)])

> > > cubes[5]

125

The last example is syntactically a bit challenging, but bears careful study. We are initializing a dictionary with
a list comprehension. The list comprehension is made up of length 2 tuples ( i, i**3 ). When a dictionary is
initialized with a sequence of length 2 tuples, it assumes the first element of the tuple i is the key and the second
element i**3is the value. Thus we have a lookup table from odd integers to to cube. Creating dictionaries from
list comprehensions as in this example is something that hard-core python programmers do almost every day,
and you should too.

23



2.11. FUNCTIONS AND CLASSES englishCHAPTER 2. PYTHON INTRO

Exercise 2.8. Create a lookup table of the product of all pairs of numbers less than 100. The key will be
a tuple of the two numbers (i,j) and the value will be the product. Hint: you can loop over multiple ranges
in a list comprehension, eg [ something for i in range(Ni) for j in range(Nj)]

2.9. The Zen of Python

Exercise 2.10. > > > import this

2.11. Functions and classes

You can define functions just about anywhere in python code. The typical function definition takes zero or
more arguments, zero or more keyword arguments, and is followed by a documentation string and the function
definition, optionally returing a value. Here is a function to compute the hypoteneuse of a right triange

def hypot(base, height):

’compute the hypoteneuse of a right triangle’

import math

return math.sqrt(base**2 + height**2)

As in the case of the for-loop, leading white space is significant and is used to delimt the start and end of the
function. In the example below, x = 1 is not in the function, because it is not indented

def growone(l):

’append 1 to a list l’

l.append(1)

x = 1

Note that this function does not return anything, because the append method modifies the list that was passed
in. You should be careful when designing functions that have side effects such as modifying the structures that
are passed in; they should be named and documented in such a way that these side effects are clear.

Python is pretty flexible with functions: you can define functions within function definitions (just be
mindful of your indentation), you can attach attributes to functions (like other objects), you can pass functions
as arguments to other functions. A function keyword argument defines a default value for a function that can
be overridden. Below is an example which provides a normalize keyword argument. The default argument is
normalize=None; the value None is a standard python idiom which usually means either do the default thing or
do nothing. If normalize is not None, we assume it is a function that can be called to normalize our data

def psd(x, normalize=None):

’compute the power spectral density of x’

if normalize is not None: x = normalize(x)

# compute the power spectra of x and return it

This function could be called with or without a normalize keyword argument, since if the argument is not
passed, the default of None is used and no normalization is done.

# no normalize argument; do the default thing

> > > psd(x)

# define a custom normalize function unitstd as pass it

# to psd

> > > def unitstd(x): return x/std(x)

> > > psd(x, normalize=unitstd)

In Section2.2 we noticed that complex objects have the real and imag data attributes, and the conjugate method.
An object is an instance of a class that defines it, and in python you can easily define your own classes. In
that section, we emphasized that one of the important features of a classes/objects is that they carry around
their data and methods in a single bundle. Let’s look at the mechnics of defining classes, and creating instances
(a.k.a. objects) of these classes. Classes have a special double underscore method init that is used as the
function to initialize the class. For this example, we’ll continue with the normalize theme above, but in this case
the normalization requires some data parameters. This example arises when you want to normalize an image
which may range over 0-255 (8 bit image) or from 0-65535 (16 bit image) to the 0-1 interval. For 16 bit images,
you would normally divide everything by 65525, but you might want to configure this to a smaller number if
your data doesn’t use the whole intensity range to enhance contrast. For simplicitly, let’s suppose our normalize
class is only interested in the pixel maximum, and will divide all the data by that value.

from __future__ import division # make sure we do float division

class Normalize:

"""

24



englishCHAPTER 2. PYTHON INTRO 2.11. FUNCTIONS AND CLASSES

A class to normalize data by dividing it by a maximum value

"""

def __init__(self, maxval):

’maxval will be mapped to 1’

self.maxval = maxval

def __call__(self, data):

’do the normalization’

# in real life you would also want to clip all values of

# data>maxval so that the returned value will be in the unit

# interval

return data/self.maxval

The triple quoted string following the definition of class Normalize is the class documentation stringd, and it
will bre shown to the user when they do help(Normalize). A commonly used convention is to name classes
with UpperCase, but this is not required. self is a special variable that a class can use to refer to its own
data and methods, and must be the first argument to all the class methods. The __init__ method stores the
normalization value maxval as a class attribute in self.maxval, and this value can later be reused by other
class methods (as it is in __call__) and it can be altered by the user of the class, as will illustrate below. The
__call__ method is another piece of python double underscore magic, it allows class instances to be used as
functions, eg you can call them just like you can call any function. OK, now let’s see how you could use this.

The first line use used to create an instance of the class Normalize, and the special method __init__ is
implicitly called. The second line implicitly calls the special __call__method

> > > norm = Normalize(65356) # good for 16 bit images

> > > norm(255) # call this function

0.0039017075708427688

# We can reset the maxval attribute, and the call method

# is automagically updated

> > > norm.maxval = 255 # reset the maxval

> > > norm(255) # and call it again

1.0

# We can pass the norm instance to the psd function we defined above, which

# is expecting a function

> > > pdf(X, normalize=norm)

Exercise 2.12. Pretend that complex were not built-in to the python core, and write your own complex
class MyComplex. Provide real and imag attributes and the conjugate method. Define __abs__, __mul__

and __add__ to implement the absolute value of complex numbers, multiplication of complex numbers and
addition of complex numbers. See the API definition of the python number protocol; although this is written
for C programmers, it contains information about the required function call signatures for each of the double
underscore methods that define the number protocol in python; where they use o1 on that page, you would use
self in python, and where they use o2 you might use other in python.10 To get you started, I’ll show you what
the __add__ method should look like

# An example double underscore method required in your MyComplex

# implementation

def __add__(self, other):

’add self to other and return a new MyComplex instance’

r = self.real + other.real

i = self.imag + other.imag

return MyComplex(r,i)

# When you are finished, test your implementation with

> > > x = MyComplex(2,3)

> > > y = MyComplex(0,1)

> > > x.real

2.0

> > > y.imag

1.0

> > > x.conjugate()

(2-3j)

10http://www.python.org/doc/current/api/number.html

25



2.13. FILES englishCHAPTER 2. PYTHON INTRO

> > > x+y

(2+4j)

> > > x*y

(-3+2j)

> > > abs(x*y)

3.6055512754639891

2.13. Files and file like objects

Working with files is one of the most common and important things we do in scientific computing because
that is usually where the data lives. In Section2.4, we went through the mechanics of automatically building
file names like

data/myexp01.dat

data/myexp02.dat

data/myexp03.dat

data/myexp04.dat

but we didn’t actually do anything with these files. Here we’ll show how to read in the data and do something
with it. Python makes working with files easy and dare I say fun. The test data set lives in data/family.csv

and is a standard comma separated value file that contains information about my family: first name, last name,
age, height in cm, weight in kg and birthdate. We’ll open this file and parse it – note that python has a standard
module for parsing CSV files that is much more sophisticated than what I am doing here. Nevertheless, it serves
as an easy to understand example that is close enough to real life that it is worth doing. Here is what the data
file looks like

First,Last,Age,Weight,Height,Birthday

John,Hunter,36,175,180,1968-03-05

Miriam,Sierig,33,135,177,1971-05-04

Rahel,Hunter,7,55,134,1998-02-25

Ava,Hunter,3,45,121,2001-04-26

Clara,Hunter,0,15,55,2004-10-02

Here is the code to parse that file

# open the file for reading

fh = file(’../data/family.csv’, ’r’)

# slurp the header, splitting on the comma

headers = fh.readline().split(’,’)

# now loop over the remaining lines in the file and parse them

for line in fh:

# remove any leading or trailing white space

line = line.strip()

# split the line on the comma into separate variables

first, last, age, weight, height, dob = line.split(’,’)

# convert some of these strings to floats

age, weight, height = [float(val) for val in (age, weight, height)]

print first, last, age, weight, height, dob

This example illustrates several interesting things. The syntax for opening a file is file(filename, mode) and
the mode is a string like ’r’ or ’w’ that determines whether you are opening in read or write mode. You can
also read and write binary files with ’rb’ and ’wb’. There are more options and you should do help(file)

to learn about them. We then use the file readline method to read in the first line of the file. This returns a
string (the line of text) and we call the string method split(’,’) to split that string wherever it sees a comma,
and this returns a list of strings which are the headers

> > > headers

[’First’, ’Last’, ’Age’, ’Weight’, ’Height’, ’Birthday\n’]

The new line character ’\n’ at the end of ’Birthday\n’ indicates we forgot to strip the string of whitespace.
To fix that, we should have done

> > > headers = fh.readline().strip().split(’,’)

> > > headers

[’First’, ’Last’, ’Age’, ’Weight’, ’Height’, ’Birthday’]

26



englishCHAPTER 2. PYTHON INTRO 2.13. FILES

Notice how this works like a pipeline: fh.readline returns a line of text as a string; we call the string method
strip which returns a string with all white space (spaces, tabs, newlines) removed from the left and right; we
then call the split method on this stripped string to split it into a list of strings.

Next we start to loop over the file – this is a nice feature of python file handles, you can iterate over
them as a sequence. We’ve learned our lesson about trailing newlines, so we first strip the line with line =

line.strip(). The rest is string processing, splitting the line on a comma as we did for the headers, and
converting the strings to numbers where approriate by calling float(val) for each of age, weight and height.
Notice how we use list comprehensions and tuple unpacking – the age, weight, height = [float(val) for val

in (age, weight, height)] line, to convert several values at once.
Now that we have all this data, how mught we store it. We could store it in a results list

results = []

for line in fh:

# process the line as above to get the variables

results.append( (first, last, age, weight, height, dob) )

# and later when we want to analyze the data

for first, last, age, weight, height, dob in results:

# do something with the data

Exercise 2.14. zip magic. Python has a nice funcion zip that lets you do very useful things with lists of
tuples. results above is a list of tuples – each tuple is the first, last, age, weight, height, dob for a family
member. What happens if you do

> > > first, last, age, weight, height, dob = zip(*results)

What is age now?

Exercise 2.15. Write a class Person and store the attributes first, last, age, weight, height, dob in
that class. Add a class instance to the results list, eg

results.append(Person(first, last, age, weight, height, dob))

Python also has a special syntax for printing to an open writable file object

# open the file for writing

outfile = file(’mydata.data’, ’w’)

for x,y,z in myresults:

print > > outfile, ’%1.3f %1.3f %1.3f’%(x,y,z)

Another really nice thing about file objects is that other classes can implement the file protcol and allow you
to use them as if they were files. For example, the StringIO module in the standard library allows you to read
and write to strings as if they were files. The urllib.urlopen function allows you to open a remove web page as
a file object. Try this

# loop over the lines in google’s html

from urllib import urlopen

for line in urlopen(’http://www.google.com’).readlines():

print line,

27





CHAPTER 3

A tour of IPython

One of Python’s most useful features is its interactive interpreter. This system allows very fast testing
of ideas without the overhead of creating test files as is typical in most programming languages. In scientific
computing, one of the reasons behind the popularity of systems like Matlab TM, IDL TMor Mathematica TM, is
precisely their interactive nature. Scientific computing is an inherently exploratory problem domain, where one
is rarely faced with writing a program against a set of well-defined explicit constraints. Being able to load data,
process it with different algorithms or test parameters, visualize it, save results, and do all of this in a fluid and
efficient way, can make a big productivity difference in day to day scientific work. Even for the development of
large codes, a good interactive interpreter can be a major asset, though this is a less commonly held view; later
in this document we will discuss this aspect of the problem.

However, the interpreter supplied with the standard Python distribution is somewhat limited for extended
interactive use. The IPython project [30] was born out of a desire to have a better Python interactive environ-
ment, which could combine the advantages of the Python language with some of the best ideas found in systems
like IDL or Mathematica, along with many more enhancements. IPython is a free software project (released
under the BSD license) which tries to:

(1) Provide an interactive shell superior to Python’s default. IPython has many features for object
introspection, system shell access, and its own special command system for adding functionality when
working interactively. It tries to be a very efficient environment both for Python code development
and for exploration of problems using Python objects (in situations like data analysis).

(2) Serve as an embeddable, ready to use interpreter for your own programs. IPython can be started
with a single call from inside another program, providing access to the current namespace. This can
be very useful both for debugging purposes and for situations where a blend of batch-processing and
interactive exploration are needed.

(3) Offer a flexible framework which can be used as the base environment for other systems with Python
as the underlying language. Specifically scientific environments like Mathematica, IDL and Matlab
inspired its design, but similar ideas can be useful in many fields.

This document is not meant to replace the comprehensive IPython manual, which ships with the IPython
distribution and is also available online at http://ipython.scipy.org/doc/manual. Instead, we will present
here some relevant parts of it for everyday use, and refer readers to the full manual for in-depth details.

Additionally, this article by Jeremy Jones provides an introductory tutorial about IPython:
http://www.onlamp.com/pub/a/python/2005/01/27/ipython.html.

3.1. Main IPython features

This section summarizes the most important user-visible features of IPython, which are not a part of the
default Python shell or other interactive Python systems. While you can use IPython as a straight replacement
for the normal Python shell, a quick read of these will allow you to take advantage of many enhancements which
can be very useful in everyday work.

A bird’s eye view of IPython’s feature set:

• Dynamic object introspection. You can access docstrings, function definition prototypes, source code,
source files and other details of any object accessible to the interpreter with a single keystroke (‘?’).
Adding a second ? produces more details when possible.

• Completion in the local namespace, via the TAB key. This works for keywords, methods, variables
and files in the current directory. TAB-completion, especially for attributes, is a convenient way to
explore the structure of any object you’re dealing with. Simply type object name.<TAB> and a list
of the object’s attributes will be printed.

• Numbered input/output prompts with command history (persistent across sessions and tied to each
profile), full searching in this history and caching of all input and output.

29

http://ipython.scipy.org/doc/manual
http://www.onlamp.com/pub/a/python/2005/01/27/ipython.html


3.2. INTERACTIVE USE englishCHAPTER 3. A TOUR OF IPYTHON

• User-extensible ‘magic’ commands. A set of commands prefixed with % is available for controlling
IPython itself and provides directory control, namespace information and many aliases to common
system shell commands.

• Alias facility for defining your own system aliases.
• Complete system shell access. Lines starting with ! are passed directly to the system shell, and using

!! captures shell output into python variables for further use.
• The ability to expand python variables when calling the system shell. In a shell command, any python

variable prefixed with $ is expanded. A double $$ allows passing a literal $ to the shell (for access to
shell and environment variables like $PATH).

• Filesystem navigation, via a magic %cd command, along with a persistent bookmark system (using
%bookmark) for fast access to frequently visited directories.

• A macro system for quickly re-executing multiple lines of previous input with a single name, imple-
mented via the %macro magic command.

• Session logging and restoring via the %logstart, %logon/off and %logstate magics. You can then
later use these log files as code in your programs.

• Verbose and colored exception traceback printouts. Easier to parse visually, and in verbose mode they
produce a lot of useful debugging information.

• Auto-parentheses: callable objects can be executed without parentheses: ‘sin 3’ is automatically
converted to ‘sin(3)’.

• Auto-quoting: using ‘,’ as the first character forces auto-quoting of the rest of the line: ‘,my_function
a b’ becomes automatically ‘my_function("a","b")’.

• Flexible configuration system. It uses a configuration file which allows permanent setting of all
command-line options, module loading, code and file execution. The system allows recursive file
inclusion, so you can have a base file with defaults and layers which load other customizations for
particular projects.

• Embeddable. You can call IPython as a python shell inside your own python programs. This can be
used both for debugging code or for providing interactive abilities to your programs with knowledge
about the local namespaces (very useful in debugging and data analysis situations).

• Easy debugger access. You can set IPython to call up the Python debugger (pdb) every time there
is an uncaught exception. This drops you inside the code which triggered the exception with all the
data live and it is possible to navigate the stack to rapidly isolate the source of a bug. The %run magic
command –with the -d option– can run any script under pdb’s control, automatically setting initial
breakpoints for you.

• Profiler support. You can run single statements (similar to profile.run()) or complete programs
under the profiler’s control. While this is possible with the standard profile module, IPython wraps
this functionality with magic commands (see ‘%prun’ and ‘%run -p’) convenient for rapid interactive
work.

3.2. Effective interactive work

IPython has been designed to try to make interactive work as fluid and efficient as possible. All of its
features try to maximize the output-per-keystroke, so that as you work at an interactive console, minimal
typing produces results. It makes extensive use of the readline library, has its own control system (magics),
caches previous inputs and outputs, has a macro system, etc. Becoming familiar with these features, while not
necessary for basic use, will make long-term use of the system much more pleasant and productive.

3.2.1. Magic functions. The default Python interactive shell only allows valid Python code to be typed
at its input prompt. While this appears like a reasonable approach in principle, in practical use it turns out
to be rather limiting. A good interactive environment should allow you to control the environment itself, in
hopefully the most typing-efficient way.

Verbosity in code is a good thing, since code is a long-lived entity, and deciphering three-letter acronyms
for variable names, 6 months after a program was written, is typically an exercise in frustration. However at
an interactive prompt, where every keystroke counts and things are not meant to be permanent, compact and
efficient control of your environment is an important feature. The default Python shell does not offer this, and
the Python language’s verbosity, which is an asset for the long-term readability of code, becomes a bit of a
liability in this context.

For this reason, IPython offers a system of ‘magic’ commands, which serve to control IPython itself and
perform a number of common tasks. Users of IDL will be familiar with the ‘dot’ commands, like .stop, which
perform similar functions in that system. In IPython, the magic system covers much more functionality and

30



englishCHAPTER 3. A TOUR OF IPYTHON 3.2. INTERACTIVE USE

is fully user-extensible. This allows users to add all the control they may desire to their everyday working
environment.

The magics system is patterned after the time-honored Unix shells, with whitespace separating arguments,
no parentheses required, and dashes for specifying options to commands. Many builtin magics also are named
like the Unix commands they mimic, so that an IPython environment can be used ‘out of the box’ by any Unix
user with ease.

IPython will treat any line whose first character is a % as a special call to a magic function. For example:
typing ‘%cd mydir’ (without the quotes) changes you working directory to ‘mydir’, if it exists. For any magic
function, typing its name followed by ? will show you the magic’s information and docstring, just like for other
regular Python objects. Simply typing magic at the prompt will print an overview of the system, and a list of
all the existing magics with their docstrings.

If you have ’automagic’ enabled, you don’t need to type in the % explicitly. Automagic is enabled by default,
and you can configure this in your ipythonrc file, via the command line option -automagic or even toggle it at
runtime with the %automagic function. IPython will scan its internal list of magic functions and call one if it
exists. With automagic on you can then just type ‘cd mydir’ to go to directory ‘mydir’. The automagic system
has the lowest possible precedence in name searches, so defining an identifier with the same name as an existing
magic function will shadow it for automagic use. You can still access the shadowed magic function by explicitly
using the % character at the beginning of the line.

An example (with automagic on) should clarify all this:

In [1]: cd ipython # %cd is called by automagic

/home/fperez/ipython

In [2]: cd = 1 # now cd is just a variable

In [3]: cd .. # and doesn’t work as a function anymore

------------------------------------------------------------

File "<console>", line 1

cd ..

^

SyntaxError: invalid syntax

In [4]: %cd .. # but %cd always works

/home/fperez

In [5]: del cd # if you remove the cd variable

In [6]: cd ipython # automagic can work again

/home/fperez/ipython

3.2.2. Object exploration. Python is a language with exceptional introspection capabilities. This means
that, within the language itself, it is possible to extract a remarkable amount of information about all objects
currently in memory. However the default Python shell exposes very little of this power in an easy to use
manner; IPython provides a lot of functionality to remedy this.

The bulk of IPython’s introspection system is accessible via only two keys: the question mark ? and the
<TAB> key. Under the hood, these two keys control a fairly complex set of libraries which ultimately rely on the
readline and inspect modules from the Python standard library. But for regular use, you should never need
to remember anything beyond these two. As an example, consider defining a variable named mylist, which
starts as an empty list:

In [1]: mylist=[]

now you can find out some things about it by using the question mark:

In [2]: mylist?

Type: list

Base Class: <type ’list’>

String Form: []

Namespace: Interactive

Length: 0

Docstring:

list() -> new list

list(sequence) -> new list initialized from sequence’s items

next, by adding a period (the standard Python attribute separator) and hitting TAB, IPython will show you all
the attributes which this object has:

In [3]: mylist.<The TAB key was pressed here>

mylist.append mylist.extend mylist.insert mylist.remove mylist.sort

31



3.2. INTERACTIVE USE englishCHAPTER 3. A TOUR OF IPYTHON

Figure 3.2.1. IPython can show syntax-highlighted source code for objects whose
source is available.

mylist.count mylist.index mylist.pop mylist.reverse

you can then request further details about any of them:

In [3]: mylist.append?

Type: builtin_function_or_method

Base Class: <type ’builtin_function_or_method’>

String Form: <built-in method append of list object at 0x403b2b6c>

Namespace: Interactive

Docstring:

L.append(object) -- append object to end

The ? system can be doubled. The first screenshot in Fig. 3.2.1 was generated by typing at the IPython prompt:

In [1]: import code

In [2]: code??

Using ?? shows the syntax-highlighted source for the code module from the Python standard library. This is an
excellent way to explore modules or objects which you are not familiar with. As long as Python’s inspect system
is capable of finding the source code for an object, IPython will show it to you, with nice syntax highlights.

This can be done for entire modules, as in the prvious example, for individual functions, or even meth-
ods of object instances. The second screenshot in the same figure shows source for the timeit method of a
timeit.Timer object.

The magic commands %pdoc, %pdef, %psource and %pfile will respectively print the docstring, function
definition line, full source code and the complete file for any object (when they can be found).

3.2.3. Input and Ouptut cached prompts. In IPython, all output results are automatically stored in
a global dictionary named Out and variables named _1, _2, etc. alias them. For example, the result of input
line 4 is available either as Out[4] or as _4. Additionally, three variables named _, __ and ___ are always kept
updated with the for the last three results. This allows you to recall any previous result and further use it for
new calculations. For example:

In [1]: 2+4

Out[1]: 6

In [2]: _+9

Out[2]: 15

In [3]: _+__

Out[3]: 21

In [4]: print _1

6

In [5]: print Out[1]

32



englishCHAPTER 3. A TOUR OF IPYTHON 3.2. INTERACTIVE USE

6

In [6]: _2**3

Out[6]: 3375

You can put a ‘;’ at the end of a line to supress the printing of output. This is useful when doing calculations
which generate long output you are not interested in seeing. The _* variables and the Out[] list do get updated
with the contents of the output, even if it is not printed. You can thus still access the generated results this
way for further processing.

A similar system exists for caching input. All input is stored in a global list called In , so you can re-execute
lines 22 through 28 plus line 34 by typing ’exec In[22:29]+In[34]’ (using Python slicing notation).

At any time, your input history remains available. The %hist command can show you all previous input,
without line numbers if desired (option -n) so you can directly copy and paste code either back in IPython or
in a text editor. You can also save all your history by turning on logging via %logstart; these logs can later be
either reloaded as IPython sessions or used as code for your programs.

If you need to execute the same set of lines often, you can assign them to a macro with the %macro magic
function. Macros are simply short names for groups of input lines, which can be re-executed by only typing
that name. Typing macro? at the prompt will show you the function’s full documentation. For example, if your
history contains:

44: x=1

45: y=3

46: z=x+y

47: print x

48: a=5

49: print ’x’,x,’y’,y

You can create a macro with lines 44 through 47 (included) and line 49 called my_macro with:

In [51]: %macro my_macro 44:48 49

Now, simply typing my_macro will re-execute all this code in one pass. The number range follows standard
Python list slicing notation, where n:m means the numbers (n, n + 1, . . . , m− 1).

You should note that macros execute in the current context, so if any variable changes, the macro will pick
up the new value every time it is executed:

In [1]: x=1

In [2]: y=x*5

In [3]: z=x+3

In [4]: print ’y is:’,y,’and z is:’,z

y is: 5 and z is: 4

# make a macro with lines 2,3,4 (note Python list slice syntax):

In [5]: macro yz 2:5

Macro ‘yz‘ created. To execute, type its name (without quotes).

Macro contents:

y=x*5

z=x+3

print ’y is:’,y,’and z is:’,z

# now, run the macro directly:

In [6]: yz

Out[6]: Executing Macro...

y is: 5 and z is: 4

# we change the value of x

In [7]: x=9

# and now if we rerun the macro, we get the new values:

In [8]: yz

Out[8]: Executing Macro...

y is: 45 and z is: 12

3.2.4. Running code. The %run magic command allows you to run any python script and load all of its
data directly into the interactive namespace. %run is a sophisticated wrapper around the Python execfile()

builtin function; since the file is re-read from disk each time, changes you make to it are reflected immediately
(in contrast to the behavior of import). I rarely use import for code I am testing, relying on %run instead.

By default,

%run myfile arg1 arg2 ...

33



3.2. INTERACTIVE USE englishCHAPTER 3. A TOUR OF IPYTHON

executes myfile in a namespace initially consisting only of __name__==’__main__’ and sys.argv being filled
with arg1, arg2, etc. This means that using %run is functionally very simlar to executing a script at the system
command line, but you get all the functionality of IPython (better tracebacks, debugger and profiler access,
etc.). The -n option prevents __name__ from being set equal to ’__main__’, in case you want to test the part
of a script which only runs when imported.

Additionally, the fact that IPython then updates your interactive namespace with the variables defined in
the script is very useful, because you can run your code to do a lot of processing, and then continue using and
exploring interactively the objects created by the program.

For example, if the file ip_simple.py contains:

import sys

print ’sys.argv is:’,sys.argv

print ’__name__ is:’,__name__

x = 1

you can run it in IPython as follows:

# First, let’s check that x is undefined

In [1]: x

---------------------------------------------------------------------------

exceptions.NameError Traceback (most recent call last)

/usr/local/home/fperez/teach/course/examples/<console>

NameError: name ’x’ is not defined

# Now we run the script (the .py extension is optional):

In [2]: run ip_simple

sys.argv is: [’ip_simple.py’]

__name__ is: __main__

# If we print x, now it has the value from the script

In [3]: x

Out[3]: 1

# Again, but now running with some arguments:

In [4]: run ip_simple -x arg1 "hello world"

sys.argv is: [’ip_simple.py’, ’-x’, ’arg1’, ’hello world’]

__name__ is: __main__

With the -i option, the namespace where your script runs is actually your interactive one. This can be used
for two sligthly different purposes. The simpler case, is just to quickly type up a set of commands in an editor
which you want to execute on your current environment (although the %edit command can also be used for
this). Consider running the file ip_simple2.py:

"""This simple file prints a variable which is NOT defined here.

It should be run via IPython ’s %run with the -i option."""

print ’x is:’,x

in IPython:

# A regular %run will produce an error:

In [1]: run ip_simple2

---------------------------------------------------------

exceptions.NameError Traceback (most recent call last)

/usr/local/home/fperez/teach/course/examples/ip_simple2.py

2

3 It should be run via IPython’s %run with the -i option."""

4

----> 5 print ’x is:’,x

6

NameError: name ’x’ is not defined

WARNING: Failure executing file: <ip_simple2.py>

x is:

# However, if you do have a variable x defined:

In [2]: x=’hello’

# you can use the -i option and the code will see x:

In [3]: run -i ip_simple2

34



englishCHAPTER 3. A TOUR OF IPYTHON 3.3. OS ACCESS

x is: hello

A different use of %run -i, is to repeatedly run scripts which may have a potentially expensive initialization
phase. If this initialization does not need to be repeated on each run (for example, you are debugging some
other submodule and can reuse the same expensive object several times), you can avoid it by protecting the
expensive object with a try/except block. This simple script illustrates the technique:

"""Example script with an expensive initialization.

Meant to be used via ipython ’s %run -i, though it can run standalone."""

# Imagine that bigobject is actually something whose creation is an expensive

# process , though here we are just going to make it a list of numbers for

# demonstration ’s sake. The trick is to trap a test for the existence of this

# name in a try/except block. If the object exists , we don’t recreate it, if

# it doesn’t exist yet (such as the first time the code is run in any given

# session), we make it.

try:

bigobject

print "We found bigobject! No need to initialize it."

except NameError:

print "bigobject not found , performing expensive initialization ..."

bigobject = range (1000)

# And now you can move on with working on bigobject:

total = sum(bigobject)

print ’total is:’,total

In IPython, here is how you can use it:

# The first time it runs, it will have to initialize

In [1]: run -i ip_expensive_init.py

bigobject not found, performing expensive initialization...

total is: 499500

# but successive runs don’t require initialization

In [2]: run -i ip_expensive_init.py

We found bigobject! No need to initialize it.

total is: 499500

# you can still run without -i, to achieve a full reload

# if you need it for any reason

In [3]: run ip_expensive_init.py

bigobject not found, performing expensive initialization...

total is: 499500

In the third run, by not using -i, your script runs in an empty namespace and this forces a full initialization
(the NameError exception is triggered).

%run also has special flags for timing the execution of your scripts (-t) and for executing them under the
control of either Python’s pdb debugger (-d) or profiler (-p). You can get all of its docstring with the usual
run? mechanism.

Thanks to all of its various control options, %run can be used as the main tool for efficient interactive
development of code which you write in your editor of choice. My personal operation mode, which has served
me well for several years of scientific work in Python, is to have a good editor (XEmacs in my case) open with
all my Python code, and IPython open in a terminal where I run, debug, explore, plot, etc.

3.3. Access to the underlying Operating System

3.3.1. Basic usage. IPython allows you to always access the underlying OS very easily. Any lines starting
with ! are passed directly to the system shell:

In [6]: !ls ip*.py

ip_expensive_init.py ip_simple2.py ip_simple.py

35



3.3. OS ACCESS englishCHAPTER 3. A TOUR OF IPYTHON

and using !! captures shell output into python variables for further use:

In [7]: !!ls ip*.py

Out[7]: [’ip_expensive_init.py’, ’ip_simple2.py’, ’ip_simple.py’]

There is a difference between the two cases: in the first, the ls command simply prints its results to the terminal
as text, but no value is returned. In the second, IPython actually captures the output of the command, splits it
as a list (one line per entry), and returns its value. This allows you to then operate on the results with Python
routines.

Additionally, IPython plays a few interesting syntactic tricks for your convenience. Whenever you make
a system call, IPython will expand any call of the type $var into the actual value of the python variable var,
so that you can call shell commands on Python values. Continuing the session above, and remembering that _

holds the previously returned value, we can call the ‘wc -l’ Unix command (which does a line count on a file)
on the files we just obtained:

In [8]: for f in _:

...: if ’simple’ in f:

...: !wc -l $f

...:

3 ip_simple2.py

4 ip_simple.py

While this is completely unorthodox (actually, invalid) Python, it is the kind of functionality which can make
for extremely efficient uses when working at an interactive command line. Obviously all of this can be done (and
it is done that way by IPython internally) with regular Python code, but that approach requires a fair amount
more typing, the use of %-based string interpolation, and making system calls via the os.system() function.

If you actually need to pass a $ character to a shell command, you simply use $$ in the IPython command
line:

In [11]: !echo $$SHELL

/bin/tcsh

If you want to capture the output of a system command directly to a named Python variable, you can use the
%sc magic function:

# by default, %sc captures to a plain string:

In [16]: %sc astr=ls ip*.py

In [17]: astr

Out[17]: ’ip_expensive_init.py\nip_simple2.py\nip_simple.py’

# but with the -l option, it splits to a list (like !! does)

In [18]: %sc -l alist=ls ip*.py

In [19]: alist

Out[19]: [’ip_expensive_init.py’, ’ip_simple2.py’, ’ip_simple.py’]

3.3.2. System aliases. In IPython, you can also define your own system aliases. Even though IPython
gives you access to your system shell via the ! prefix, it is convenient to have aliases to the system commands
you use most often. This allows you to work seamlessly from inside IPython with the same commands you are
used to in your system shell:

‘%alias alias_name cmd’ defines ‘alias_name’ as an alias for ‘cmd’

Then, typing ‘alias_name params’ will execute the system command ‘cmd params’ (from your underlying
operating system). Aliases have lower precedence than magic functions and Python normal variables, so if
‘foo’ is both a Python variable and an alias, the alias can not be executed until ‘del foo’ removes the Python
variable. If you need to access an alias directly, you can use the builtin function ipalias as ipalias(’foo’).

You can use the %l specifier in an alias definition to represent the whole line when the alias is called. For
example:

In [2]: alias all echo "Input in brackets: <%l>"

In [3]: all hello world

Input in brackets: <hello world>

You can also define aliases with positional parameters using %s specifiers (one per parameter):

In [1]: alias parts echo first %s second %s

In [2]: %parts A B

first A second B

In [3]: %parts A

Incorrect number of arguments: 2 expected.

36



englishCHAPTER 3. A TOUR OF IPYTHON 3.3. OS ACCESS

parts is an alias to: ’echo first %s second %s’

Aliases expand Python variables just like system calls using ! or !! do: all expressions prefixed with ’$’ get
expanded. For details of the semantic rules, see PEP-215: http://www.python.org/peps/pep-0215.html. This
is the library used by IPython for variable expansion.

Simply typing alias will print a list of the current aliases, and unalias can be used to remove an alias.
For further details, use alias?.

3.3.3. Directory management. IPython comes with some pre-defined aliases and a complete system
for changing directories, both via a stack (see %pushd, %popd and %ds) and via direct %cd. The latter keeps a
history of visited directories and allows you to go to any previously visited one. You can see this history with
the %dhist magic:

In [1]: cd ~/code/python

/home/fperez/code/python

In [2]: cd ~/teach/

/home/fperez/teach

In [3]: cd ~/research

/home/fperez/research

In [4]: dhist

Directory history (kept in _dh)

0: /home/fperez/teach/course/examples

1: /home/fperez/code/python

2: /home/fperez/teach

3: /home/fperez/research

In [5]: cd -1

/home/fperez/code/python

The %bookmark magic allows you to create named bookmarks in your filesystem, which cd can be directed to go
to (with the -b flag), and to which it will try to default automatically if no such named directory exists. The
system is very easy to use and quite natural in practice:

In [8]: bookmark course

In [9]: cd

/home/fperez

In [10]: ls course

ls: course: No such file or directory

In [11]: cd course

(bookmark:course) -> /home/fperez/teach/course

/home/fperez/teach/course

3.3.4. IPython as a system shell. While IPython is not a system shell, it ships with a special profile
called pysh, which you can activate at the command line as ‘ipython -p pysh’. This modifies IPython’s
behavior and adds some additional facilities and a prompt customized for filesystem navigation.

Note that this does not make IPython a full-fledged system shell. In particular, it has no job control, so if
you type Ctrl-Z (under Unix), you’ll suspend pysh itself, not the process you just started.

What the shell profile allows you to do is to use the convenient and powerful syntax of Python to do quick
scripting at the command line. Below we describe some of its features.

3.3.4.1. Aliases. All of your $PATH has been loaded as IPython aliases, so you should be able to type any
normal system command and have it executed. See %alias? and %unalias? for details on the alias facilities.
See also %rehash? and %rehashx? for details on the mechanism used to load $PATH.

3.3.4.2. Special syntax. Any lines which begin with ‘~’, ‘/’ and ‘.’ will be executed as shell commands
instead of as Python code. The special escapes below are also recognized. !cmd is valid in single or multi-line
input, all others are only valid in single-line input:

!cmd: pass ‘cmd’ directly to the shell
!!cmd: execute ‘cmd’ and return output as a list (split on ‘\n’)
$var=cmd: capture output of cmd into var, as a string (shorthand for %sc var=cmd)
$$var=cmd: capture output of cmd into var, as a list (split on ‘\n’, shorthand for %sc -l var=cmd)

3.3.4.3. Useful functions and modules. The os, sys and shutil modules from the Python standard library
are automatically loaded. Some additional functions, useful for shell usage, are listed below. You can request
more help about them with ‘?’.

shell: - execute a command in the underlying system shell

37

http://www.python.org/peps/pep-0215.html


3.6. DEBUGGING AND PROFILING englishCHAPTER 3. A TOUR OF IPYTHON

system: - like shell(), but return the exit status of the command
sout: - capture the output of a command as a string
lout: - capture the output of a command as a list (split on ‘\n’)
getoutputerror: - capture (output,error) of a shell commandss

sout/lout are the functional equivalents of $/$$. They are provided to allow you to capture system output in
the middle of true python code, function definitions, etc (where $ and $$ are invalid)

3.4. Access to an editor

You can use %edit to have almost multiline editing. While IPython doesn’t support true multiline editing,
this command allows you to call an editor on the spot, and IPython will execute the code you type in there as
if it were typed interactively.

%edit runs your IPython configured editor. By default this is read from your environment variable $EDITOR.
If this isn’t found, it will default to vi under Linux/Unix and to notepad under Windows.

You can also set the value of this editor via the command-line option ‘-editor’ or in your ipythonrc file.
This is useful if you wish to use specifically for IPython an editor different from your typical default (and for
Windows users who typically don’t set environment variables).

This command allows you to conveniently edit multi-line code right in your IPython session.
If called without arguments, %edit opens up an empty editor with a temporary file and will execute the

contents of this file when you close it (don’t forget to save it!).

3.5. Customizing IPython

3.5.1. Basics. IPython has a very flexible configuration system. It uses a configuration file which allows
permanent setting of all command-line options, module loading, code and file execution. The system allows
recursive file inclusion, so you can have a base file with defaults and layers which load other customizations for
particular projects.

IPython reads a configuration file which can be specified at the command line (-rcfile) or which by default
is assumed to be called ipythonrc. Such a file is looked for in the current directory where IPython is started
and then in your IPYTHONDIR, which allows you to have local configuration files for specific projects. The default
value for this directory is $HOME/.ipython (_ipython under Windows). Under Unix operating systems $HOME

always exists; for Windows, IPython will try to find such an environment variable; if it doesn’t exist, it uses
HOMEDRIVE\HOMEPATH (these are always defined by Windows). This typically gives something like C:\Documents

and Settings\YourUserName, but your local details may vary. Finally, you can make this directory live anywhere
you want by creating an environment variable called $IPYTHONDIR.

In this directory you will find all the files that configure IPython’s defaults, and you can put there your
profiles and extensions. This directory is automatically added by IPython to sys.path, so anything you place
there can be found by import statements.

The syntax of an rcfile is one of key-value pairs separated by whitespace, one per line. Lines beginning with a
# are ignored as comments, but comments can not be put on lines with data (the parser is fairly primitive). You
can study the default rcfile created by IPython at startup for customization details, it is extremely commented.

3.5.2. Profiles. IPython can load any configuration file you want if you give its name at startup with the
-rcfile flag. However, for convenience it provides a shorthand based on a naming convention for loading such
profiles. This system allows you to easily maintain customized versions of IPython for specific purposes.

With the -profile <name> flag (you can abbreviate it to -p), IPython will assume that your config file is
called ipythonrc-<name> (it looks in current dir first, then in IPYTHONDIR). This is a quick way to keep and
load multiple config files for different tasks, especially if you use the include option of config files. You can keep
a basic IPYTHONDIR/ipythonrc file and then have other profiles which include this one and load extra things for
particular tasks. For example:

(1) $HOME/.ipython/ipythonrc: load basic things you always want.
(2) $HOME/.ipython/ipythonrc-math: load (1) and basic math-related modules.
(3) $HOME/.ipython/ipythonrc-numeric: load (1) and Numeric and plotting modules.

Since it is possible to create an endless loop by having circular file inclusions, IPython will stop if it reaches 15
recursive inclusions.

3.6. Debugging and profiling with IPython

The Python standard library includes powerful facilities for debugging and profiling code, but it is common
to find even experienced Python programmers who still do not take advantage of them. In part, this is due to
the fact that loading and configuring them requires reading an extra documentation section, and keeping a bit

38



englishCHAPTER 3. A TOUR OF IPYTHON 3.6. DEBUGGING AND PROFILING

Figure 3.6.1. IPython can provide extremely detailed tracebacks.

of additional information about their use in your head. IPython tries to automate their use to the point where,
with a single command, you can use either of these subsystems in a transparent manner. Hopefully they will
become part of your daily workflow.

At its most basic, for debugging your programs, you can rely on using %run to execute them, see the results,
play with all variables loaded into the interactive namespace, etc. A typical working session involves keeping
your favorite editor open with the file you are working on, and repeatedly calling %run on it as you make changes
and save them.

If your program raises an exception, IPython will provide you with a more detailed traceback than the
default Python ones. You can even increase the level of detail further by using %xmode Verbose, which forces
the printing of variable values at all stack frames. This option should be used with care though (and that’s why
it is not the default), as printing a ten-million-entry array can lock up your computer for a very long time. An
example of this kind of very informative traceback is shown in Fig. 3.6.1.

3.6.1. Automatic invocation of pdb on exceptions. IPython, if started with the -pdb option (or if
the option is set in your rc file) can call the Python pdb debugger every time your code triggers an uncaught
exception. This feature can also be toggled at any time with the %pdb magic command. This can be extremely
useful in order to find the origin of subtle bugs, because pdb opens up at the point in your code which triggered
the exception, and while your program is at this point ‘dead’, all the data is still available and you can walk up
and down the stack frame and understand the origin of the problem.

Furthermore, you can use these debugging facilities both with the embedded IPython mode and without
IPython at all. For an embedded shell (see sec. 3.7), simply call the constructor with ‘-pdb’ in the argument
string and automatically pdb will be called if an uncaught exception is triggered by your code.

For stand-alone use of the feature in your programs which do not use IPython at all, put the following lines
toward the top of your ‘main’ routine:

import sys,IPython.ultraTB

sys.excepthook = IPython.ultraTB.FormattedTB(mode=‘Verbose’,

color_scheme=‘Linux’, call_pdb=1)

39



3.7. EMBEDDING englishCHAPTER 3. A TOUR OF IPYTHON

The mode keyword can be either ‘Verbose’ or ‘Plain’, giving either very detailed or normal tracebacks respec-
tively. The color_scheme keyword can be one of ‘NoColor’, ‘Linux’ (default) or ‘LightBG’. These are the
same options which can be set in IPython with -colors and -xmode.

This will give any of your programs detailed, colored tracebacks with automatic invocation of pdb.

3.6.2. Running entire programs via pdb. pdb, the Python debugger, is a powerful interactive debugger
which allows you to step through code, set breakpoints, watch variables, etc. IPython makes it very easy to
start any script under the control of pdb, regardless of whether you have wrapped it into a ‘main()’ function or
not. For this, simply type ‘%run -d myscript’ at an IPython prompt. See the %run command’s documentation
(run?) for more details, including how to control where pdb will stop execution first.

For more information on the use of the pdb debugger, read the included pdb.doc file (part of the standard
Python distribution). On a stock Linux system it is located at /usr/lib/python2.3/pdb.doc, but the easiest
way to read it is by using the help() function of the pdb module as follows (in an IPython prompt):

In [1]: import pdb

In [2]: pdb.help()

This will load the pdb.doc document in a file viewer for you automatically.

3.6.3. Profiling. When dealing with performance issues, the %run command with a -p option allows you
to run complete programs under the control of the Python profiler. The %prun command does a similar job for
single Python expressions (like function calls, similar to profile.run()). While this is possible with the standard
profile module, IPython wraps this functionality with magic commands convenient for rapid interactive work.

3.7. Embedding IPython into your programs

A few lines of code are enough to load a complete IPython inside your own programs, giving you the ability
to work with your data interactively after automatic processing has been completed.

You can call IPython as a python shell inside your own python programs. This can be used both for
debugging code or for providing interactive abilities to your programs with knowledge about the local namespaces
(very useful in debugging and data analysis situations).

It is possible to start an IPython instance inside your own Python programs. This allows you to evaluate
dynamically the state of your code, operate with your variables, analyze them, etc. Note however that any
changes you make to values while in the shell do not propagate back to the running code, so it is safe to modify
your values because you won’t break your code in bizarre ways by doing so.

This feature allows you to easily have a fully functional python environment for doing object introspection
anywhere in your code with a simple function call. In some cases a simple print statement is enough, but if you
need to do more detailed analysis of a code fragment this feature can be very valuable.

It can also be useful in scientific computing situations where it is common to need to do some automatic,
computationally intensive part and then stop to look at data, plots, etc1. Opening an IPython instance will give
you full access to your data and functions, and you can resume program execution once you are done with the
interactive part (perhaps to stop again later, as many times as needed).

The following code snippet is the bare minimum you need to include in your Python programs for this to
work (detailed examples follow later):

from IPython.Shell import IPShellEmbed

ipshell = IPShellEmbed()

ipshell() # this call anywhere in your program will start IPython

You can run embedded instances even in code which is itself being run at the IPython interactive prompt with
’%run <filename>’. Since it’s easy to get lost as to where you are (in your top-level IPython or in your embedded
one), it’s a good idea in such cases to set the in/out prompts to something different for the embedded instances.
The code examples below illustrate this.

You can also have multiple IPython instances in your program and open them separately, for example with
different options for data presentation. If you close and open the same instance multiple times, its prompt
counters simply continue from each execution to the next.

Please look at the docstrings in the Shell.py module for more details on the use of this system.
The following sample file illustrating how to use the embedding functionality is provided in the examples

directory as example-embed.py. It should be fairly self-explanatory:

1This functionality was inspired by IDL’s combination of the stop keyword and the .continue executive command, which
I have found very useful in the past, and by a posting on comp.lang.python by cmkl <cmkleffner@gmx.de> on Dec. 06/01
concerning similar uses of pyrepl.

40



englishCHAPTER 3. A TOUR OF IPYTHON 3.7. EMBEDDING

#!/usr/bin/env python

"""An example of how to embed an IPython shell into a running program.

Please see the documentation in the IPython.Shell module for more details.

The accompanying file example -embed -short.py has quick code fragments for

embedding which you can cut and paste in your code once you understand how

things work.

The code in this file is deliberately extra -verbose , meant for learning."""

# The basics to get you going:

# IPython sets the __IPYTHON__ variable so you can know if you have nested

# copies running.

# Try running this code both at the command line and from inside IPython (with

# %run example -embed.py)

try:

__IPYTHON__

except NameError:

nested = 0

args = [’’]

else:

print "Running nested copies of IPython."

print "The prompts for the nested copy have been modified"

nested = 1

# what the embedded instance will see as sys.argv:

args = [’-pi1’,’In <\\#>:’,’-pi2’,’ .\\D.:’,’-po’,’Out <\\#>:’,’-nosep’]

# First import the embeddable shell class

from IPython.Shell import IPShellEmbed

# Now create an instance of the embeddable shell. The first argument is a

# string with options exactly as you would type them if you were starting

# IPython at the system command line. Any parameters you want to define for

# configuration can thus be specified here.

ipshell = IPShellEmbed(args ,

banner = ’Dropping into IPython ’,

exit_msg = ’Leaving Interpreter , back to program.’)

# Make a second instance , you can have as many as you want.

if nested:

args [1] = ’In2 <\\#>’

else:

args = [’-pi1’,’In2 <\\#>:’,’-pi2’,’ .\\D.:’,’-po’,’Out <\\#>:’,’-nosep’]

ipshell2 = IPShellEmbed(args ,banner = ’Second IPython instance.’)

print ’\nHello. This is printed from the main controller program .\n’

# You can then call ipshell () anywhere you need it (with an optional

# message):

ipshell(’*** Called from top level. ’

41



3.7. EMBEDDING englishCHAPTER 3. A TOUR OF IPYTHON

’Hit Ctrl -D to exit interpreter and continue program.’)

print ’\nBack in caller program , moving along ...\n’

#---------------------------------------------------------------------------

# More details:

# IPShellEmbed instances don’t print the standard system banner and

# messages. The IPython banner (which actually may contain initialization

# messages) is available as <instance >.IP.BANNER in case you want it.

# IPShellEmbed instances print the following information everytime they

# start:

# - A global startup banner.

# - A call -specific header string , which you can use to indicate where in the

# execution flow the shell is starting.

# They also print an exit message every time they exit.

# Both the startup banner and the exit message default to None , and can be set

# either at the instance constructor or at any other time with the

# set_banner () and set_exit_msg () methods.

# The shell instance can be also put in ’dummy’ mode globally or on a per -call

# basis. This gives you fine control for debugging without having to change

# code all over the place.

# The code below illustrates all this.

# This is how the global banner and exit_msg can be reset at any point

ipshell.set_banner(’Entering interpreter - New Banner ’)

ipshell.set_exit_msg(’Leaving interpreter - New exit_msg ’)

def foo(m):

s = ’spam’

ipshell(’***In foo(). Try @whos , or print s or m:’)

print ’foo says m = ’,m

def bar(n):

s = ’eggs’

ipshell(’***In bar(). Try @whos , or print s or n:’)

print ’bar says n = ’,n

# Some calls to the above functions which will trigger IPython:

print ’Main program calling foo("eggs")\n’

foo(’eggs’)

# The shell can be put in ’dummy’ mode where calls to it silently return. This

# allows you , for example , to globally turn off debugging for a program with a

# single call.

ipshell.set_dummy_mode (1)

42



englishCHAPTER 3. A TOUR OF IPYTHON 3.7. EMBEDDING

print ’\nTrying to call IPython which is now "dummy":’

ipshell ()

print ’Nothing happened ...’

# The global ’dummy’ mode can still be overridden for a single call

print ’\nOverriding dummy mode manually:’

ipshell(dummy =0)

# Reactivate the IPython shell

ipshell.set_dummy_mode (0)

print ’You can even have multiple embedded instances:’

ipshell2 ()

print ’\nMain program calling bar("spam")\n’

bar(’spam’)

print ’Main program finished. Bye!’

#********************** End of file <example -embed.py> ***********************

Once you understand how the system functions, you can use the following code fragments in your programs
which are ready for cut and paste:

"""Quick code snippets for embedding IPython into other programs.

See example -embed.py for full details , this file has the bare minimum code for

cut and paste use once you understand how to use the system."""

#---------------------------------------------------------------------------

# This code loads IPython but modifies a few things if it detects it’s running

# embedded in another IPython session (helps avoid confusion)

try:

__IPYTHON__

except NameError:

argv = [’’]

banner = exit_msg = ’’

else:

# Command -line options for IPython (a list like sys.argv)

argv = [’-pi1’,’In <\\#>:’,’-pi2’,’ .\\D.:’,’-po’,’Out <\\#>:’]

banner = ’*** Nested interpreter ***’

exit_msg = ’*** Back in main IPython ***’

# First import the embeddable shell class

from IPython.Shell import IPShellEmbed

# Now create the IPython shell instance. Put ipshell () anywhere in your code

# where you want it to open.

ipshell = IPShellEmbed(argv ,banner=banner ,exit_msg=exit_msg)

#---------------------------------------------------------------------------

# This code will load an embeddable IPython shell always with no changes for

# nested embededings.

from IPython.Shell import IPShellEmbed

ipshell = IPShellEmbed ()

43



3.8. MATPLOTLIB englishCHAPTER 3. A TOUR OF IPYTHON

# Now ipshell () will open IPython anywhere in the code.

#---------------------------------------------------------------------------

# This code loads an embeddable shell only if NOT running inside

# IPython. Inside IPython , the embeddable shell variable ipshell is just a

# dummy function.

try:

__IPYTHON__

except NameError:

from IPython.Shell import IPShellEmbed

ipshell = IPShellEmbed ()

# Now ipshell () will open IPython anywhere in the code

else:

# Define a dummy ipshell () so the same code doesn’t crash inside an

# interactive IPython

def ipshell (): pass

#******************* End of file <example -embed -short.py> ********************

3.8. Integration with Matplotlib

The matplotlib library (http://matplotlib.sourceforge.net) provides high quality 2D plotting for Python.
Matplotlib can produce plots on screen using a variety of GUI toolkits, including Tk, GTK and WXPython. It
also provides a number of commands useful for scientific computing, all with a syntax compatible with that of
the popular Matlab program.

IPython accepts the special option -pylab. This configures it to support matplotlib, honoring the settings
in the .matplotlibrc file. IPython will detect the user’s choice of matplotlib GUI backend, and automatically
select the proper threading model to prevent blocking. It also sets matplotlib in interactive mode and modifies
%run slightly, so that any matplotlib-based script can be executed using %run and the final show() command
does not block the interactive shell.

The -pylab option must be given first in order for IPython to configure its threading mode. However, you
can still issue other options afterwards. This allows you to have a matplotlib-based environment customized
with additional modules using the standard IPython profile mechanism: “ipython -pylab -p myprofile” will
load the profile defined in ipythonrc-myprofile after configuring matplotlib.

44

http://matplotlib.sourceforge.net


CHAPTER 4

Introduction to numerix arrays

To be written...

45





CHAPTER 5

Introduction to plotting with matplotlib / pylab

5.1. A bird’s eye view

matplotlib is a library for making 2D plots of arrays in python.1 Although it has its origins in emulating
the Matlab graphics commands, it does not require matlab, and has a pure, object oriented API. Although
matplotlib is written primarily in python, it makes heavy use of Numeric/numarray and other extension code
to provide good performance even for large arrays. matplotlib is designed with the philosophy that you should
be able to create simple plots with just a few commands, or just one! If you want to see a histogram of your
data, you shouldn’t need to instantiate objects, call methods, set properties, and so on; it should just work.

The matplotlib code is divided into three parts: the pylab interface is the set of functions provided by the
pylab module which allow the user to create plots with code quite similar to matlab figure generating code.
The matplotlib frontend or matplotlib API is the set of classes that do the heavy lifting, creating and managing
figures, text, lines, plots and so on. This is an abstract interface that knowns nothing about output formats.
The backends are device dependent drawing devices, aka renderers, that transform the frontend representation
to hardcopy or a display device. Example backends: PS creates postscript hardcopy, SVG creates scalar vector
graphics hardcopy, Agg creates PNG output using the high quality antigrain library that ships with matplotlib,
GTK embeds matplotlib in a GTK application, GTKAgg uses the antigrain2 renderer to create a figure and
embed it a GTK application, and so on for WX, Tkinter, FLTK, . . . .

For years, I used to use matlab exclusively for data analysis and visualization. matlab excels at making
nice looking plots easy. When I began working with EEG data, I found that I needed to write applications
to interact with my data, and developed and EEG analysis application in matlab. As the application grew in
complexity, interacting with databases, http servers, manipulating complex data structures, I began to strain
against the limitations of matlab as a programming language, and decided to start over in python. python more
than makes up for all of matlab’s deficiencies as a programming language, but I was having difficulty finding a
2D plotting package – for 3D VTK, which is discussed at length below more than exceeds all of my needs.

When I went searching for a python plotting package, I had several requirements:

• Plots should look great - publication quality. One important requirement for me is that the text looks
good (antialiased, etc)

• Postscript output for inclusion with LATEX documents and publication quality printing
• Embeddable in a graphical user interface for application development
• The code should be mostly python so itis easy to understand and extend – users become developers!
• Making plots should be easy – just a few lines of code for simple graphs

Finding no package that suited me just right, I did what any self-respecting python programmer would do:
rolled up my sleeves and dived in. Not having any real experience with computer graphics, I decided to emulate
matlab’s plotting capabilities because that is something matlab does very well. This had the added advantage
that many people have a lot of matlab experience, and thus they can quickly get up to steam plotting in python.
From a developer’s perspective, having a fixed user interface (the pylab interface) has been very useful, because
the guts of the code base can be redesigned without affecting user code.

Without further ado, let’s create our first figure. This example uses the matplotlib object oriented API.
Most users use the pylab interface, which will be discussed next and makes it easier to make plots because a
lot of the tedius work of creating and managing figures and figure windows is done for you behind the hood.
But since the real core of the library is the object oriented API, I think it is a good place to start. If you are
developing a graphical user interface or making plots on a web server, you probably want maximal control with
no magic going on behind the scenes – this is where the matplotlib API should be used. If you are just trying
to make a figure for inclusion in a paper or if your working interactively from the python shell, you’ll probably
be happy with the pylab interface.

1This short guide is not meant as a complete guide or tutorial. There is a more comprehensive user’s guide and tutorial
on the matplotlib web-site at http://matplotlib.sf.net.
2http://antigrain.com

47



5.2. PYLAB TUTORIAL englishCHAPTER 5. MATPLOTLIB

Figure 5.1.1. A simple plot generated by the antigrain (Agg) backend .

Listing 5.1

"""

A pure object oriented example using the agg backend

"""

# import the matplotlib backend you want to use and the Figure class

from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas

from matplotlib.figure import Figure

# the figure is the center of the action , and the canvas is a backend

# dependent container to hold the figure and make backend specific calls

fig = Figure ()

canvas = FigureCanvas(fig)

# you can add multiple subplots and axes

ax = fig.add_subplot (111)

# the simplest plot!

ax.plot ([1,2,3])

# you can decorate your plot with text and grids

ax.set_title(’hi mom’)

ax.grid(True)

ax.set_xlabel(’time’)

ax.set_ylabel(’volts’)

# and save it to hardcopy

fig.savefig(’../fig/mpl_one_two_three.png’)

5.2. A short pylab tutorial

Here is about the simplest code you can use to create a figure with matplotlib using the pylab interface. In
this section, I’m assuming you are using ipython in the pylab mode – see Section3.8 for details.

48



englishCHAPTER 5. MATPLOTLIB 5.2. PYLAB TUTORIAL

Figure 5.2.1. The matplotlib toolbar used to navigate around your figure

peds-pc311:~> pylab

Python 2.3.3 (#2, Apr 13 2004, 17:41:29)

Type "copyright", "credits" or "license" for more information.

IPython 0.6.12_cvs -- An enhanced Interactive Python.

? -> Introduction to IPython’s features.

%magic -> Information about IPython’s ’magic’ % functions.

help -> Python’s own help system.

object? -> Details about ’object’. ?object also works, ?? prints more.

Welcome to pylab, a matplotlib-based Python environment

help(matplotlib) -> generic matplotlib information

help(pylab) -> matlab-compatible commands from matplotlib

help(plotting) -> plotting commands

In [1]: plot([1,2,3])

Out[1]: [<matplotlib.lines.Line2D instance at 0xb557a86c>]

If your settings are correct, a figure window should popup and you should be able to interact with it. That’s
a lot less typing than our initial example using the object oriented API in which you had to manually create
the Figure, Axes and so on!

Try clicking on the navigation toolbar at the bottom of the figure – the toolbar is shown in Figure5.2.1.
The first three buttons from left to right in Figure5.2.1 are home, back and forward. These byttons are are
akin to the web browser buttons. They are used to navigate back and forth between previously defined views.
They have no meaning unless you have already navigated somewhere else using the pan and zoom buttons as
described below. This is analogous to trying to click Back on your web browser before visiting a new page
–nothing happens. The home button always takes you to the first, default view of your data.

The next to button moving right is the pan/zoom button, which looks like a cross with arrows on the end
(a fleur). The pan/zoom button button has two modes: pan and zoom (no surprise there, right?). Click this
toolbar button to activate this mode; you should see “pan/zoom mode” show up in the status bar. Then put
your mouse somewhere over an axes. To activate panning: press the left mouse button and hold it, dragging it
to a new position. If you press x or y while panning, the motion will be contrained to the x or y axis, respectively
. To activate zooming, press the right mouse button, dragging it to a new position. The x axis will be zoomed
in proportionate to the rightward movement and zoomed out proportionate to the leftward movement. Ditto
for the yaxis and up/down motions. The point under your mouse when you begin the zoom remains stationary,
allowing you to zoom to an arbitrary point in the figure. You can use the modifier keys x, y or CONTROL to
constrain the zoom to the x axes, the y axes, or aspect ratio preserve, respectively.

The next button moving right is the zoom to rectangle button which has a magnifying glass over a piece of
paper. The button is striaghtforward and works in the standard way; when you click it, you should see that it
is activated by looking for “Zoom to rect mode” in the status bar, and then you select the rectangular region
you want to zoom in on.

The final button is the save button, which will save your figure in the current view. All of the *Agg backends
know how to save the following image types: PNG, PS, EPS, SVG.

Let’s make the same figure we made using the object oriented API above, ie Figure5.1.1, but this time using
the pylab

Listing 5.2

from pylab import *

plot ([1 ,2,3])

title(’hi mom’)

grid(True)

xlabel(’time’)

49



5.2. PYLAB TUTORIAL englishCHAPTER 5. MATPLOTLIB

ylabel(’volts’)

savefig(’../fig/mpl_one_two_three.png’)

show()

As you can see there is basically a direct translation between the OO interface and the pylab interface. When
plot is called, the pylab interface makes a call to the function gca() (“get current axes”) to get a reference to
the current axes. gca in turn, makes a call to gcf (“get current figure”) to get a reference to the current figure.
gcf, finding that no figure has been created, creates the default figure using figure() and returns it. gca will
then return the current axes of that figure if it exists, or create the default axes subplot(111) if it does not.
The last line show is a GUI independent way of actually creating a figure window, and is not required for image
backends such as postscript.

Thus a lot happens under the hood when you call plot, but for the most part you don’t need to think about
it – it just works. The important thing to understand is that the pylab interface has a state, and keeps track
of the current figure and axes. All plotting commands target the current axes, and you can manipulate which
ones are current

Listing 5.3

from pylab import *

def f(t):

s1 = cos(2*pi*t)

e1 = exp(-t)

return multiply(s1 ,e1)

t1 = arange (0.0, 5.0, 0.1)

t2 = arange (0.0, 5.0, 0.02)

t3 = arange (0.0, 2.0, 0.01)

# create and upper subplot and make it current

subplot (211)

l1, l2 = plot(t1, f(t1), ’bo’, t2, f(t2), ’k--’)

set(l1, markerfacecolor=’g’)

grid(True)

title(’A tale of 2 subplots ’)

ylabel(’Damped oscillation ’)

# create a lower subplot and make it current

subplot (212)

plot(t3, cos (2*pi*t3), ’r.’)

grid(True)

xlabel(’time (s)’)

ylabel(’Undamped ’)

savefig(’../fig/mpl_subplot_demo ’)

show()

In addition to creating multiple subplots, this example contains a couple of new things. In the first plot
command, the return value is stored as l1, l2 and the set command is used to change a default line property.

l1, l2 = plot(t1, f(t1), ’bo’, t2, f(t2), ’k--’)

set(l1, markerfacecolor=’g’)

l1 and l2 are matplotlib.lines.Line2D instances and they are created by the plot command and added to
the current axes. This is the typical mode of operation of the axes plot commands: they create a bunch of
primitive objects (lines, polygons, text, images), add them to the axes, and return them. In this example, the
line’s markerfacecolor property is set with the set command. In the next section, we’ll look into matplotlibs
set and get introspection system and show how to use it to customize your lines, polygons, text instances and
images.

50



englishCHAPTER 5. MATPLOTLIB 5.3. SET AND GET

Figure 5.2.2. It’s easy to create multiple axes and subplots.

5.3. Set and get introspection

Everything that goes into a matplotlib figure, including the Figure itself, are all objects dervied from a
single base class Artist, and the pylab set and get commands provide a unified way to configure them. Let’s
create a simple plot of random circles, and use that to explore how set and get work. First the basic plot –
we’ll store the return value as lines. Note that plot always returns a list of lines; in the example above there
were two lines l1 and l2, and in the example below there is only a single element of the list lines. No matter:
set and get will work on a single instance or a sequence of instances

In [2]: x = rand (20); y = rand (20)

In [3]: lines = plot(x,y,’o’)

In [4]: type(lines) # plot always returns a list

Out [4]: <type ’list’>

In [5]: len(lines) # even if it is length 1

Out [5]: 1

The simple figure that was created, a scattering of blue circles at random locations, is shown in Figure5.3.1.
To see a listing of the properties of the line, and what their current values are, call get(lines)

In [29]: get(lines)

alpha = 1.0

antialiased or aa = True

clip_on = True

color or c = blue

figure = <matplotlib.figure.Figure instance at 0xb40e1cec >

label =

linestyle or ls = None

linewidth or lw = 0.5

marker = o

markeredgecolor or mec = black

markeredgewidth or mew = 0.5

markerfacecolor or mfc = blue

51



5.3. SET AND GET englishCHAPTER 5. MATPLOTLIB

Figure 5.3.1. The default marker plot, before marker customization

markersize or ms = 6.0

transform = <Affine object at 0x8683c6c >

visible = True

xdata = [ 0.16952688 0.59729624 0.16829208 0.51311375 0.7227286

...0.45925692]...

ydata = [ 0.86459035 0.25595992 0.01905832 0.24303582 0.74993261

...0.28751132]...

zorder = 2

and to see the same listing of properties with information on legal values you can set them to, call set(lines)

In [37]: set(lines)

alpha: float

antialiased or aa: [True | False]

clip_box: a matplotlib.transform.Bbox instance

clip_on: [True | False]

color or c: any matplotlib color - see help(colors)

dashes: sequence of on/off ink in points

data: (array xdata , array ydata)

data_clipping: [True | False]

figure: a matplotlib.figure.Figure instance

label: any string

linestyle or ls: [ ’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’ ]

linewidth or lw: float value in points

lod: [True | False]

marker: [ ’+’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ |

... ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ ]

markeredgecolor or mec: any matplotlib color - see help(colors)

markeredgewidth or mew: float value in points

markerfacecolor or mfc: any matplotlib color - see help(colors)

markersize or ms: float

transform: a matplotlib.transform transformation instance

visible: [True | False]

xclip: (xmin , xmax)

52



englishCHAPTER 5. MATPLOTLIB 5.3. SET AND GET

Figure 5.3.2. The default marker plot, before marker customization

xdata: array

yclip: (ymin , ymax)

ydata: array

zorder: any number

OK, we have a lot of options here. Let’s change the marker properties, and add a linesytle

In [20]: set(lines, markerfacecolor=’green’, markeredgecolor=’red’,

....: markersize=20, markeredgewidth=3,

....: linestyle=’--’, linewidth=3)

That’s a lot of typing, but to great effect! The same data set now has quite a different appearance, which
is shown in Figure5.3.2. Note in the long listing output of the set(lines) command above the markerfacecolor
settable property is listed as

markerfacecolor or mfc: any matplotlib color - see help(colors)

The markerfacecolor has an alias mfc to save typing, and common colornames have abbreviations too, so the
set command above could just as well be written

In [20]: set(lines, mfc=’g’, mec=’r’, ms=20, mew=3, ls=’--’, lw=3)

Another nice thing about matplotlib properties is that you can pass them in as keyword arguments to plot and
they will have the same effect, eg, you can create the identical plot with

In [6]: plot(x, y, ’o’, mfc=’g’, mec=’r’, ms=20, mew=3, ls=’--’, lw=3)

Out[6]: [<matplotlib.lines.Line2D instance at 0xb40db42c>]

As noted above, set and get work on any Artist, so you can configure your axes or text instances this way.
Eg, xlabel returns a matplotlib.text.Text instance

In [8]: t = xlabel(’time (s)’)

In [9]: set(t)

alpha: float

backgroundcolor: any matplotlib color - see help(colors)

bbox: rectangle prop dict plus key ’pad’ which is a pad in points

clip_box: a matplotlib.transform.Bbox instance

clip_on: [True | False]

color: any matplotlib color - see help(colors)

family: [ ’serif’ | ’sans -serif’ | ’cursive ’ | ’fantasy ’ | ’monospace ’ ]

53



5.4. NUMERIX englishCHAPTER 5. MATPLOTLIB

figure: a matplotlib.figure.Figure instance

fontproperties: a matplotlib.font_manager.FontProperties instance

horizontalalignment or ha: [ ’center ’ | ’right’ | ’left’ ]

label: any string

lod: [True | False]

multialignment: [’left’ | ’right’ | ’center ’ ]

name or fontname: string eg, [’Sans’ | ’Courier ’ | ’Helvetica ’ ...]

position: (x,y)

rotation: [ angle in degrees ’vertical ’ | ’horizontal ’

size or fontsize: [ size in points | relative size eg ’smaller ’, ’x-large’

...] style or fontstyle: [ ’normal ’ | ’italic ’ | ’oblique ’]

text: string

transform: a matplotlib.transform transformation instance

variant: [ ’normal ’ | ’small -caps’ ]

verticalalignment or va: [ ’center ’ | ’top’ | ’bottom ’ ]

visible: [True | False]

weight or fontweight: [ ’normal ’ | ’bold’ | ’heavy’ | ’light’ | ’ultrabold ’

... | ’ultralight ’]

x: float

y: float

zorder: any number

So you have a lot of possibilities to customize your text! The most common things people what to do are change
the font size and color; the results of this command on the xlabel are shown in Figure5.3.2.

In [25]: set(t, fontsize=20, color=’darkslategray’)

5.4. A common interface to Numeric and numarray

Currently the python computing community is in a state of having too many array pacakges, none of which
satisfy everyone’s needs. Although Numeric and numarray both provide the same set of core functions, they are
organized differently, and matplotlib provides a compatibility later so you can use either one in your matplotlib
scripts without having to change your code.

Several numarray/Numeric developers are codevelopers of matplotlib, giving matplotlib full Numeric and
numarray compatibility, thanks in large part to Todd Miller’s matplotlib.numerix module and the numarray
compatibility layer for extension code. This allows you to choose between Numeric or numarray at the prompt
or in a config file. Thus when you do

# import matplotlib and all the numerix functions

from pylab import *

you’ll not only get all the matplotlib pylab interface commands, but most of the Numeric or numarray package
as well (depending on your numerix setting). All of the array creation and manipulation functions are imported,
such as array, arange, take, where, etc, as are the external module functions which reside in mlab, fft and
linear_algebra.

Even if you don’t want to import all of the numerix symbols from the pytlab interface, to make your
matplotlib scripts as portable as possible with respect to your choice of array packages, it is advised not to
explicitly import Numeric or numarray. Rather, you should use matplotlib.numerix where possible, either by
using the functions imported by pylab, or by explicitly importing the numerix module, as in

# create a numerix namespace

import matplotlib.numerix as n

from matplotlib.numerix.mlab import mean

x = n.arange(100)

y = n.take(x, range(10,20))

print mean(y)

For the remainder of this manual, the term numerix is used to mean either the Numeric or numarray package.
To select numarray or Numeric from the prompt, run your matplotlib script with

> python myscript.py --numarray # use numarray

> python myscript.py --Numeric # use Numeric

54



englishCHAPTER 5. MATPLOTLIB 5.7. IMAGES

Typically, however, users will choose one or the other and make this setting in their rc file using either numerix
: Numeric or numerix : numarray.

5.5. Customizing the default behavior with the rc file

matplotlib is designed to work in a variety of settings: some people use it in ”batch mode” on a web server
to create images they never look at. Others use graphical user interfaces (GUIs) to interact with their plots.
Thus you must customize matplotlib to work like you want it to with the customization file .matplotlibrc, in
which you can set whether you want to just create images or use a GUI (the backend setting), and whether you
want to work interactively from the shell (the interactive setting). Almost all of the matplotlib settings and
figure properties can be customized with this file, which is installed with the rest of the matplotlib data (fonts,
icons, etc) into a directory determined by distutils. Before compiling matplotlib, it resides in the same dir as
setup.py and will be copied into your install path. Typical locations for this file are

C:\Python23\share\matplotlib\.matplotlibrc # windows /usr/share/matplotlib/.matplotlibrc # linux

By default, the installer will overwrite the existing file in the install path, so if you want to preserve your’s,
please move it to your HOME dir and set the environment variable if necessary. In the rc file, you can set your
backend , your numerix setting , whether you’ll be working interactively and default values for most of the figure
properties.

In the RC file, blank lines, or lines starting with a comment symbol, are ignored, as are trailing comments.
Other lines must have the format

key : val # optional comment

where key is some property like backend, lines.linewidth, or figure.figsize and val is the value of that
property. Example entries for these properties are

# this is a comment and is ignored

backend : GTKAgg # the default backend

lines.linewidth : 0.5 # line width in points

figure.figsize : 8, 6 # figure size in inches

A complete sample rc file is included with the matplotlib distribution and available online.3

5.6. A quick tour of plot types

5.7. Images

Matplotlib has support for plotting images with imshow and figimage. In imshow, the image data is scaled
to fit into the current axes, and many different interpolation schemes are supported to do the resampling, and
in figimage, the image data are transferred as a raw pixel dump to the figure canvas without resampling. You
can add colorbars, set the default colormaps, and change the interpolation schemes quite easily.

In [15]: x = arange(100.0); x.shape = 10,10

In [16]: im = imshow(x, interpolation=’nearest’)

In [17]: colorbar()

Out[17]: <matplotlib.axes.Axes instance at 0xb455496c>

which creates the image shown in Figure 5.7.1. You can interactively update the default colormap and change
the interpolation scheme, which creates the image show in Figure 5.7.2.

In [18]: im.set_interpolation(’bilinear’)

In [19]: hot()

There is a lot more you can do with images: you can set the data extent so that you can overlay contours or
other plots, you can plot multiple images to the same axes with different colors and transparency values, you
can load images with PIL or imread and plot them in matplotlib, you can create montages of with figimage

placed around the figure window at different offsets, you can plot grayscale, rgb or rgba data, and so on.
Consult the Matplotlib User’s Guide and the examples subdirectory in the matplotlib source distribution for
more information. We’ll clost off with a simple example of reading in a PNG and displaying it

3http://matplotlib.sourceforge.net/.matplotlibrc

55



5.7. IMAGES englishCHAPTER 5. MATPLOTLIB

Figure 5.7.1. A simple image plot of a 2D matrix, using nearest neighbor interpola-
tion and the jet colormap.

Figure 5.7.2. The same image data, rendered with the hot colormap and bilinear
interpolation. matplotlib has 14 colormaps built-in, and you can define your own with
relative ease, and there are 16 interpolation methods.

In [35]: im = imread(’../data/ratner.png’)

In [36]: imshow(im)

Out[36]: <matplotlib.image.AxesImage instance at 0xb3ffba2c>

In [37]: axis(’off’)

56



englishCHAPTER 5. MATPLOTLIB 5.9. EVENT

Figure 5.7.3. Displaying image data from your camera in matplotlib

5.8. Customizing text and mathematical expressions

5.9. Event handling: Tracking the mouse and keyboard

57





CHAPTER 6

A tour of SciPy

Chapter contributed by Travis E. Oliphant

6.1. Introduction

SciPy is a collection of mathematical algorithms and convenience functions built on the Numeric extension
for Python. It adds significant power to the interactive Python session by exposing the user to high-level
commands and classes for the manipulation and visualization of data. With SciPy, an interactive Python
session becomes a data-processing and system-prototyping environment rivaling sytems such as Matlab, IDL,
Octave, R-Lab, and SciLab.

The additional power of using SciPy within Python, however, is that a powerful programming language is
also available for use in developing sophisticated programs and specialized applications. Scientific applications
written in SciPy benefit from the development of additional modules in numerous niche’s of the software land-
scape by developers across the world. Everything from parallel programming to web and data-base subroutines
and classes have been made available to the Python programmer. All of this power is available in addition to
the mathematical libraries in SciPy.

This document provides a tutorial for the first-time user of SciPy to help get started with some of the
features available in this powerful package. It is assumed that the user has already installed the package. Some
general Python facility is also assumed such as could be acquired by working through the Tutorial in the Python
distribution. For further introductory help the user is directed to the Numeric documentation. Throughout this
tutorial it is assumed that the user has imported all of the names defined in the SciPy namespace using the
command

>>> from scipy import *

6.1.1. General Help. Python provides the facility of documentation strings. The functions and classes
available in SciPy use this method for on-line documentation. There are two methods for reading these messages
and getting help. Python provides the command help in the pydoc module. Entering this command with no
arguments (i.e. > > > help ) launches an interactive help session that allows searching through the keywords
and modules available to all of Python. Running the command help with an object as the argument displays
the calling signature, and the documentation string of the object.

The pydoc method of help is sophisticated but uses a pager to display the text. Sometimes this can interfere
with the terminal you are running the interactive session within. A scipy-specific help system is also available
under the command scipy.info. The signature and documentation string for the object passed to the help
command are printed to standard output (or to a writeable object passed as the third argument). The second
keyword argument of “scipy.info” defines the maximum width of the line for printing. If a module is passed as
the argument to help than a list of the functions and classes defined in that module is printed. For example:

>>> info(optimize.fmin)

fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None,

full_output=0, printmessg=1)

Minimize a function using the simplex algorithm.

Description:

Uses a Nelder-Mead simplex algorithm to find the minimum of function

of one or more variables.

Inputs:

func -- the Python function or method to be minimized.

59



6.1. INTRODUCTION englishCHAPTER 6. A TOUR OF SCIPY

x0 -- the initial guess.

args -- extra arguments for func.

xtol -- relative tolerance

Outputs: (xopt, {fopt, warnflag})

xopt -- minimizer of function

fopt -- value of function at minimum: fopt = func(xopt)

warnflag -- Integer warning flag:

1 : ’Maximum number of function evaluations.’

2 : ’Maximum number of iterations.’

Additional Inputs:

xtol -- acceptable relative error in xopt for convergence.

ftol -- acceptable relative error in func(xopt) for convergence.

maxiter -- the maximum number of iterations to perform.

maxfun -- the maximum number of function evaluations.

full_output -- non-zero if fval and warnflag outputs are desired.

printmessg -- non-zero to print convergence messages.

Another useful command is source. When given a function written in Python as an argument, it prints out
a listing of the source code for that function. This can be helpful in learning about an algorithm or understanding
exactly what a function is doing with its arguments. Also don’t forget about the Python command dir which
can be used to look at the namespace of a module or package.

6.1.2. SciPy Organization. SciPy is organized into subpackages covering different scientific computing
domains. Some common functions which several subpackages rely on live under the scipy_base package which
is installed at the same directory level as the scipy package itself and could be installed separately. This allows
for the possibility of separately distributing the subpackages of scipy as long as scipy base package is provided
as well.

Two other packages are installed at the higher-level: scipy distutils and weave. These two packages while
distributed with main scipy package could see use independently of scipy and so are treated as separate packages
and described elsewhere.

The remaining subpackages are summarized in the following table (a * denotes an optional sub-package
that requires additional libraries to function or is not available on all platforms).

Subpackage Description

cluster Clustering algorithms

cow Cluster of Workstations code for parallel programming

fftpack FFT based on fftpack – default

fftw* FFT based on fftw — requires FFTW libraries (is this still needed?)

ga Genetic algorithms

gplt* Plotting — requires gnuplot

integrate Integration

interpolate Interpolation

io Input and Output

linalg Linear algebra

optimize Optimization and root-finding routines

plt* Plotting — requires wxPython

signal Signal processing

special Special functions

stats Statistical distributions and functions

xplt Plotting with gist

Because of their ubiquitousness, some of the functions in these subpackages are also made available in the
scipy namespace to ease their use in interactive sessions and programs. In addition, many convenience functions

60



englishCHAPTER 6. A TOUR OF SCIPY 6.2. BASIC FUNCTIONS

are located in the scipy base package and the in the top-level of the scipy package. Before looking at the
sub-packages individually, we will first look at some of these common functions.

6.2. Basic functions in scipy base and top-level scipy

6.2.1. Interaction with Numeric. To begin with, all of the Numeric functions have been subsumed into
the scipy namespace so that all of those functions are available without additionally importing Numeric. In
addition, the universal functions (addition, subtraction, division) have been altered to not raise exceptions if
floating-point errors are encountered1, instead NaN’s and Inf’s are returned in the arrays. To assist in detection
of these events new universal functions (isnan, isfinite, isinf) have been added.

In addition, the comparision operators have been changed to allow comparisons and logical operations of
complex numbers (only the real part is compared). Also, with the new universal functions in SciPy, the logical
operations (except logical XXX functions) all return arrays of unsigned bytes (8-bits per element instead of the
old 32-bits, or even 64-bits) per element2.

In an effort to get a consistency for default arguments, some of the default arguments have changed from
Numeric. The idea is for you to use scipy as a base package instead of Numeric anyway.

Finally, some of the basic functions like log, sqrt, and inverse trig functions have been modified to return
complex numbers instead of NaN’s where appropriate (i.e. scipy.sqrt(-1) returns 1j).

6.2.2. Alter numeric. With the command scipy.alter numeric() you can now use index and mask
arrays inside brackets and the coercion rules of Numeric will be changed so that Python scalars will not be used
to determine the type of the output of an expression.

6.2.3. Scipy base routines. The purpose of scipy base is to collect general-purpose routines that the
other sub-packages can use and to provide a simple replacement for Numeric. Anytime you might think to
import Numeric, you can import scipy base instead and remove yourself from direct dependence on Numeric.
These routines are divided into several files for organizational purposes, but they are all available under the
scipy base namespace (and the scipy namespace). There are routines for type handling and type checking, shape
and matrix manipulation, polynomial processing, and other useful functions. Rather than giving a detailed
description of each of these functions (which is available using the help, info and source commands), this
tutorial will discuss some of the more useful commands which require a little introduction to use to their full
potential.

6.2.3.1. Type handling. Note the difference between iscomplex (isreal) and iscomplexobj (isrealobj).
The former command is array based and returns byte arrays of ones and zeros providing the result of the
element-wise test. The latter command is object based and returns a scalar describing the result of the test on
the entire object.

Often it is required to get just the real and/or imaginary part of a complex number. While complex numbers
and arrays have attributes that return those values, if one is not sure whether or not the object will be complex-
valued, it is better to use the functional forms real and imag. These functions succeed for anything that can
be turned into a Numeric array. Consider also the function real if close which transforms a complex-valued
number with tiny imaginary part into a real number.

Occasionally the need to check whether or not a number is a scalar (Python (long)int, Python float, Python
complex, or rank-0 array) occurs in coding. This functionality is provided in the convenient function isscalar
which returns a 1 or a 0.

Finally, ensuring that objects are a certain Numeric type occurs often enough that it has been given a
convenient interface in SciPy through the use of the cast dictionary. The dictionary is keyed by the type it is
desired to cast to and the dictionary stores functions to perform the casting. Thus, > > > a = cast[’f’](d)

returns an array of float32 from d. This function is also useful as an easy way to get a scalar of a certain type:
> > > fpi = cast[’f’](pi) although this should not be needed if you use alter numeric().

6.2.3.2. Index Tricks. Thre are some class instances that make special use of the slicing functionality to
provide efficient means for array construction. This part will discuss the operation of mgrid, ogrid, r , and c
for quickly constructing arrays.

One familiar with Matlab may complain that it is difficult to construct arrays from the interactive session
with Python. Suppose, for example that one wants to construct an array that begins with 3 followed by 5 zeros
and then contains 10 numbers spanning the range -1 to 1 (inclusive on both ends). Before SciPy, you would
need to enter something like the following

1These changes are all made in a new module (fastumath) that is part of the scipy base package. The old functionality is
still available in umath (part of Numeric) if you need it (note: importing umath or fastumath resets the behavior of the
infix operators to use the umath or fastumath ufuncs respectively).
2Be careful when treating logical expressions as integers as the 8-bit integers may silently overflow at 256.

61



6.2. BASIC FUNCTIONS englishCHAPTER 6. A TOUR OF SCIPY

> > > concatenate(([3],[0]*5,arange(-1,1.002,2/9.0)).
With the r command one can enter this as
> > > r_[3,[0]*5,-1:1:10j]

which can ease typing and make for more readable code. Notice how objects are concatenated, and the slicing
syntax is (ab)used to construct ranges. The other term that deserves a little explanation is the use of the
complex number 10j as the step size in the slicing syntax. This non-standard use allows the number to be
interpreted as the number of points to produce in the range rather than as a step size (note we would have used
the long integer notation, 10L, but this notation may go away in Python as the integers become unified). This
non-standard usage may be unsightly to some, but it gives the user the ability to quickly construct complicated
vectors in a very readable fashion. When the number of points is specified in this way, the end-point is inclusive.

The “r” stands for row concatenation because if the objects between commas are 2 dimensional arrays, they
are stacked by rows (and thus must have commensurate columns). There is an equivalent command c that
stacks 2d arrays by columns but works identically to r for 1d arrays.

Another very useful class instance which makes use of extended slicing notation is the function mgrid. In
the simplest case, this function can be used to construct 1d ranges as a convenient substitute for arange. It
also allows the use of complex-numbers in the step-size to indicate the number of points to place between the
(inclusive) end-points. The real purpose of this function however is to produce N, N-d arrays which provide
coordinate arrays for an N-dimensional volume. The easiest way to understand this is with an example of its
usage:

>>> mgrid[0:5,0:5]

array([[[0, 0, 0, 0, 0],

[1, 1, 1, 1, 1],

[2, 2, 2, 2, 2],

[3, 3, 3, 3, 3],

[4, 4, 4, 4, 4]],

[[0, 1, 2, 3, 4],

[0, 1, 2, 3, 4],

[0, 1, 2, 3, 4],

[0, 1, 2, 3, 4],

[0, 1, 2, 3, 4]]])

>>> mgrid[0:5:4j,0:5:4j]

array([[[ 0. , 0. , 0. , 0. ],

[ 1.6667, 1.6667, 1.6667, 1.6667],

[ 3.3333, 3.3333, 3.3333, 3.3333],

[ 5. , 5. , 5. , 5. ]],

[[ 0. , 1.6667, 3.3333, 5. ],

[ 0. , 1.6667, 3.3333, 5. ],

[ 0. , 1.6667, 3.3333, 5. ],

[ 0. , 1.6667, 3.3333, 5. ]]])

Having meshed arrays like this is sometimes very useful. However, it is not always needed just to evaluate
some N-dimensional function over a grid due to the array-broadcasting rules of Numeric and SciPy. If this is the
only purpose for generating a meshgrid, you should instead use the function ogrid which generates an “open”
grid using NewAxis judiciously to create N, N-d arrays where only one-dimension in each array has length
greater than 1. This will save memory and create the same result if the only purpose for the meshgrid is to
generate sample points for evaluation of an N-d function.

6.2.3.3. Shape manipulation. In this category of functions are routines for squeezing out length-one di-
mensions from N-dimensional arrays, ensuring that an array is at least 1-, 2-, or 3-dimensional, and stacking
(concatenating) arrays by rows, columns, and “pages” (in the third dimension). Routines for splitting arrays
(roughly the opposite of stacking arrays) are also available.

6.2.3.4. Matrix manipulations. These are functions specifically suited for 2-dimensional arrays that were
part of MLab in the Numeric distribution, but have been placed in scipy base for completeness so that users
are not importing Numeric.

6.2.3.5. Polynomials. There are two (interchangeable) ways to deal with 1-d polynomials in SciPy. The
first is to use the poly1d class in scipy base. This class accepts coefficients or polynomial roots to initialize a
polynomial. The polynomial object can then be manipulated in algebraic expressions, integrated, differentiated,
and evaluated. It even prints like a polynomial:

>>> p = poly1d([3,4,5])

>>> print p

62



englishCHAPTER 6. A TOUR OF SCIPY 6.2. BASIC FUNCTIONS

2

3 x + 4 x + 5

>>> print p*p

4 3 2

9 x + 24 x + 46 x + 40 x + 25

>>> print p.integ(k=6)

3 2

x + 2 x + 5 x + 6

>>> print p.deriv()

6 x + 4

>>> p([4,5])

array([ 69, 100])

The other way to handle polynomials is as an array of coefficients with the first element of the array giving
the coefficient of the highest power. There are explicit functions to add, subtract, multiply, divide, integrate,
differentiate, and evaluate polynomials represented as sequences of coefficients.

6.2.3.6. Vectorizing functions (vectorize). One of the features that SciPy provides is a class vectorize to
convert an ordinary Python function which accepts scalars and returns scalars into a “vectorized-function” with
the same broadcasting rules as other Numeric functions (i.e. the Universal functions, or ufuncs). For example,
suppose you have a Python function named addsubtract defined as:

>>> def addsubtract(a,b):

if a > b:

return a - b

else:

return a + b

which defines a function of two scalar variables and returns a scalar result. The class vectorize can be used to
“vectorize” this function so that

>>> vec_addsubtract = vectorize(addsubtract)

returns a function which takes array arguments and returns an array result:

>>> vec_addsubtract([0,3,6,9],[1,3,5,7])

array([1, 6, 1, 2])

This particular function could have been written in vector form without the use of vectorize. But, what
if the function you have written is the result of some optimization or integration routine. Such functions can
likely only be vectorized using vectorize.

6.2.3.7. Other useful functions. There are several other functions in the scipy base package including most
of the other functions that are also in MLab that comes with the Numeric package. The reason for duplicating
these functions is to allow SciPy to potentially alter their original interface and make it easier for users to know
how to get access to functions > > > from scipy import *.

New functions which should be mentioned are mod(x,y) which can replace x%y when it is desired that the
result take the sign of y instead of x. Also included is fix which always rounds to the nearest integer towards
zero. For doing phase processing, the functions angle, and unwrap are also useful. Also, the linspace and
logspace functions return equally spaced samples in a linear or log scale. Finally, mention should be made of
the new function select which extends the functionality of where to include multiple conditions and multiple
choices. The calling convention is select(condlist,choicelist,default=0). Select is a vectorized form of
the multiple if-statement. It allows rapid construction of a function which returns an array of results based on
a list of conditions. Each element of the return array is taken from the array in a choicelist corresponding to
the first condition in condlist that is true. For example

>>> x = r_[-2:3]

>>> x

array([-2, -1, 0, 1, 2])

>>> select([x > 3, x >= 0],[0,x+2])

array([0, 0, 2, 3, 4])

6.2.4. Common functions. Some functions depend on sub-packages of SciPy but should be available
from the top-level of SciPy due to their common use. These are functions that might have been placed in
scipy base except for their dependence on other sub-packages of SciPy. For example the factorial and comb
functions compute n! and n!/k!(n− k)! using either exact integer arithmetic (thanks to Python’s Long integer
object), or by using floating-point precision and the gamma function. The functions rand and randn are used

63



6.4. INTEGRATION englishCHAPTER 6. A TOUR OF SCIPY

so often that they warranted a place at the top level. There are convenience functions for the interactive use:
disp (similar to print), and who (returns a list of defined variables and memory consumption–upper bounded).
Another function returns a common image used in image processing: lena.

Finally, two functions are provided that are useful for approximating derivatives of functions using discrete-
differences. The function central diff weights returns weighting coefficients for an equally-spaced N -point
approximation to the derivative of order o. These weights must be multiplied by the function corresponding to
these points and the results added to obtain the derivative approximation. This function is intended for use
when only samples of the function are avaiable. When the function is an object that can be handed to a routine
and evaluated, the function derivative can be used to automatically evaluate the object at the correct points
to obtain an N-point approximation to the oth-derivative at a given point.

6.3. Special functions (special)

The main feature of the special package is the definition of numerous special functions of mathematical
physics. Available functions include airy, elliptic, bessel, gamma, beta, hypergeometric, parabolic cylinder,
mathieu, spheroidal wave, struve, and kelvin. There are also some low-level stats functions that are not intended
for general use as an easier interface to these functions is provided by the stats module. Most of these functions
can take array arguments and return array results following the same broadcasting rules as other math functions
in Numerical Python. Many of these functions also accept complex-numbers as input. For a complete list of
the available functions with a one-line description type > > >info(special). Each function also has it’s own
documentation accessible using help. If you don’t see a function you need, consider writing it and contributing
it to the library. You can write the function in either C, Fortran, or Python. Look in the source code of the
library for examples of each of these kind of functions.

6.4. Integration (integrate)

The integrate sub-package provides several integration techniques including an ordinary differential equa-
tion integrator. An overview of the module is provided by the help command:

>>> help(integrate)

Methods for Integrating Functions

odeint -- Integrate ordinary differential equations.

quad -- General purpose integration.

dblquad -- General purpose double integration.

tplquad -- General purpose triple integration.

gauss_quad -- Integrate func(x) using Gaussian quadrature of order n.

gauss_quadtol -- Integrate with given tolerance using Gaussian quadrature.

See the orthogonal module (integrate.orthogonal) for Gaussian

quadrature roots and weights.

6.4.1. General integration (integrate.quad). The function quad is provided to integrate a function
of one variable between two points. The points can be ±∞ (±integrate.inf) to indicate infinite limits. For
example, suppose you wish to integrate a bessel function jv(2.5,x) along the interval [0, 4.5].

I =

Z 4.5

0

J2.5 (x) dx.

This could be computed using quad:

>>> result = integrate.quad(lambda x: special.jv(2.5,x), 0, 4.5)

>>> print result

(1.1178179380783249, 7.8663172481899801e-09)

>>> I = sqrt(2/pi)*(18.0/27*sqrt(2)*cos(4.5)-4.0/27*sqrt(2)*sin(4.5)+

sqrt(2*pi)*special.fresnl(3/sqrt(pi))[0])

>>> print I

1.117817938088701

>>> print abs(result[0]-I)

1.03761443881e-11

64



englishCHAPTER 6. A TOUR OF SCIPY 6.4. INTEGRATION

The first argument to quad is a “callable” Python object (i.e a function, method, or class instance). Notice
the use of a lambda-function in this case as the argument. The next two arguments are the limits of integration.
The return value is a tuple, with the first element holding the estimated value of the integral and the second
element holding an upper bound on the error. Notice, that in this case, the true value of this integral is

I =

r
2

π

„
18

27

√
2 cos (4.5)− 4

27

√
2 sin (4.5) +

√
2πSi

„
3√
π

««
,

where

Si (x) =

Z x

0

sin
“π

2
t2
”

dt.

is the Fresnel sine integral. Note that the numerically-computed integral is within 1.04 × 10−11 of the exact
result — well below the reported error bound.

Infinite inputs are also allowed in quad by using ±integrate.inf (or inf) as one of the arguments. For
example, suppose that a numerical value for the exponential integral:

En (x) =

Z ∞

1

e−xt

tn
dt.

is desired (and the fact that this integral can be computed as special.expn(n,x) is forgotten). The functionality
of the function special.expn can be replicated by defining a new function vec expint based on the routine
quad:

>>> from integrate import quad, Inf

>>> def integrand(t,n,x):

return exp(-x*t) / t**n

>>> def expint(n,x):

return quad(integrand, 1, Inf, args=(n, x))[0]

>>> vec_expint = vectorize(expint)

>>> vec_expint(3,arange(1.0,4.0,0.5))

array([ 0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])

>>> special.expn(3,arange(1.0,4.0,0.5))

array([ 0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])

The function which is integrated can even use the quad argument (though the error bound may underes-
timate the error due to possible numerical error in the integrand from the use of quad). The integral in this
case is

In =

Z ∞

0

Z ∞

1

e−xt

tn
dt dx =

1

n
.

>>> result = quad(lambda x: expint(3, x), 0, Inf)

>>> print result

(0.33333333324560266, 2.8548934485373678e-09)

>>> I3 = 1.0/3.0

>>> print I3

0.333333333333

>>> print I3 - result[0]

8.77306560731e-11

This last example shows that multiple integration can be handled using repeated calls to quad. The
mechanics of this for double and triple integration have been wrapped up into the functions dblquad and
tplquad. The function, dblquad performs double integration. Use the help function to be sure that the
arguments are defined in the correct order. In addition, the limits on all inner integrals are actually functions
which can be constant functions. An example of using double integration to compute several values of In is
shown below:

>>> from __future__ import nested_scopes

>>> from integrate import quad, dblquad, Inf

>>> def I(n):

return dblquad(lambda t, x: exp(-x*t)/t**n, 0, Inf, lambda x: 1, lambda x: Inf)

65



6.4. INTEGRATION englishCHAPTER 6. A TOUR OF SCIPY

>>> print I(4)

(0.25000000000435768, 1.0518245707751597e-09)

>>> print I(3)

(0.33333333325010883, 2.8604069919261191e-09)

>>> print I(2)

(0.49999999999857514, 1.8855523253868967e-09)

6.4.2. Gaussian quadrature (integrate.gauss quadtol). A few functions are also provided in order to
perform simple Gaussian quadrature over a fixed interval. The first is fixed quad which performs fixed-order
Gaussian quadrature. The second function is quadrature which performs Gaussian quadrature of multiple
orders until the difference in the integral estimate is beneath some tolerance supplied by the user. These
functions both use the module special.orthogonal which can calculate the roots and quadrature weights of a
large variety of orthogonal polynomials (the polynomials themselves are available as special functions returning
instances of the polynomial class — e.g. special.legendre).

6.4.3. Integrating using samples. There are three functions for computing integrals given only samples:
trapz, simps, and romb. The first two functions use Newton-Coates formulas of order 1 and 2 respectively
to perform integration. These two functions can handle, non-equally-spaced samples. The trapezoidal rule
approximates the function as a straight line between adjacent points, while Simpson’s rule approximates the
function between three adjacent points as a parabola.

If the samples are equally-spaced and the number of samples available is 2k + 1 for some integer k, then
Romberg integration can be used to obtain high-precision estimates of the integral using the available sam-
ples. Romberg integration uses the trapezoid rule at step-sizes related by a power of two and then performs
Richardson extrapolation on these estimates to approximate the integral with a higher-degree of accuracy. (A
different interface to Romberg integration useful when the function can be provided is also available as inte-
grate.romberg).

6.4.4. Ordinary differential equations (integrate.odeint). Integrating a set of ordinary differential
equations (ODEs) given initial conditions is another useful example. The function odeint is available in SciPy
for integrating a first-order vector differential equation:

dy

dt
= f (y, t) ,

given initial conditions y (0) = y0, where y is a length N vector and f is a mapping from RN to RN . A higher-
order ordinary differential equation can always be reduced to a differential equation of this type by introducing
intermediate derivatives into the y vector.

For example suppose it is desired to find the solution to the following second-order differential equation:

d2w

dz2
− zw(z) = 0

with initial conditions w (0) = 1
3√

32Γ( 2
3 )

and dw
dz

˛̨
z=0

= − 1
3√3Γ( 1

3 )
. It is known that the solution to this differential

equation with these boundary conditions is the Airy function

w = Ai (z) ,

which gives a means to check the integrator using special.airy.
First, convert this ODE into standard form by setting y =

ˆ
dw
dz

, w
˜

and t = z. Thus, the differential equation
becomes

dy

dt
=

»
ty1

y0

–
=

»
0 t
1 0

– »
y0

y1

–
=

»
0 t
1 0

–
y.

In other words,

f (y, t) = A (t)y.

As an interesting reminder, if A (t) commutes with
R t

0
A (τ) dτ under matrix multiplication, then this linear

differential equation has an exact solution using the matrix exponential:

y (t) = exp

„Z t

0

A (τ) dτ

«
y (0) ,

However, in this case, A (t) and its integral do not commute.
There are many optional inputs and outputs available when using odeint which can help tune the solver.

These additional inputs and outputs are not needed much of the time, however, and the three required input
arguments and the output solution suffice. The required inputs are the function defining the derivative, fprime,
the initial conditions vector, y0, and the time points to obtain a solution, t, (with the initial value point as the

66



englishCHAPTER 6. A TOUR OF SCIPY 6.5. OPTIMIZATION (OPTIMIZE)

first element of this sequence). The output to odeint is a matrix where each row contains the solution vector
at each requested time point (thus, the initial conditions are given in the first output row).

The following example illustrates the use of odeint including the usage of the Dfun option which allows
the user to specify a gradient (with respect to y) of the function, f (y, t).

>>> from integrate import odeint

>>> from special import gamma, airy

>>> y1_0 = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)

>>> y0_0 = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)

>>> y0 = [y0_0, y1_0]

>>> def func(y, t):

return [t*y[1],y[0]]

>>> def gradient(y,t):

return [[0,t],[1,0]]

>>> x = arange(0,4.0, 0.01)

>>> t = x

>>> ychk = airy(x)[0]

>>> y = odeint(func, y0, t)

>>> y2 = odeint(func, y0, t, Dfun=gradient)

>>> import sys

>>> sys.float_output_precision = 6

>>> print ychk[:36:6]

[ 0.355028 0.339511 0.324068 0.308763 0.293658 0.278806]

>>> print y[:36:6,1]

[ 0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

>>> print y2[:36:6,1]

[ 0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

6.5. Optimization (optimize)

There are several classical optimization algorithms provided by SciPy in the optimize package. An overview
of the module is available using help (or pydoc.help):

>>> info(optimize)

Optimization Tools

A collection of general-purpose optimization routines.

fmin -- Nelder-Mead Simplex algorithm

(uses only function calls)

fmin_powell -- Powell’s (modified) level set method (uses only

function calls)

fmin_bfgs -- Quasi-Newton method (can use function and gradient)

fmin_ncg -- Line-search Newton Conjugate Gradient (can use

function, gradient and hessian).

leastsq -- Minimize the sum of squares of M equations in

N unknowns given a starting estimate.

Scalar function minimizers

fminbound -- Bounded minimization of a scalar function.

brent -- 1-D function minimization using Brent method.

golden -- 1-D function minimization using Golden Section method

bracket -- Bracket a minimum (given two starting points)

Also a collection of general_purpose root-finding routines.

67



6.5. OPTIMIZATION (OPTIMIZE) englishCHAPTER 6. A TOUR OF SCIPY

fsolve -- Non-linear multi-variable equation solver.

Scalar function solvers

brentq -- quadratic interpolation Brent method

brenth -- Brent method (modified by Harris with

hyperbolic extrapolation)

ridder -- Ridder’s method

bisect -- Bisection method

newton -- Secant method or Newton’s method

fixed_point -- Single-variable fixed-point solver.

The first four algorithms are unconstrained minimization algorithms (fmin: Nelder-Mead simplex, fmin bfgs:
BFGS, fmin ncg: Newton Conjugate Gradient, and leastsq: Levenburg-Marquardt). The fourth algorithm only
works for functions of a single variable but allows minimization over a specified interval. The last algorithm
actually finds the roots of a general function of possibly many variables. It is included in the optimization
package because at the (non-boundary) extreme points of a function, the gradient is equal to zero.

6.5.1. Nelder-Mead Simplex algorithm (optimize.fmin). The simplex algorithm is probably the
simplest way to minimize a fairly well-behaved function. The simplex algorithm requires only function evalu-
ations and is a good choice for simple minimization problems. However, because it does not use any gradient
evaluations, it may take longer to find the minimum. To demonstrate the minimization function consider the
problem of minimizing the Rosenbrock function of N variables:

f (x) =

N−1X
i=1

100
`
xi − x2

i−1

´2
+ (1− xi−1)

2 .

The minimum value of this function is 0 which is achieved when xi = 1. This minimum can be found using the
fmin routine as shown in the example below:

>>> from scipy.optimize import fmin

>>> def rosen(x): # The Rosenbrock function

return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)

>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]

>>> xopt = fmin(rosen, x0)

Optimization terminated successfully.

Current function value: 0.000000

Iterations: 516

Function evaluations: 825

>>> print xopt

[ 1. 1. 1. 1. 1.]

Another optimization algorithm that needs only function calls to find the minimum is Powell’s method
available as optimize.fmin powell.

6.5.2. Broyden-Fletcher-Goldfarb-Shanno algorithm (optimize.fmin bfgs). In order to converge
more quickly to the solution, this routine uses the gradient of the objective function. If the gradient is not given
by the user, then it is estimated using first-differences. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
typically requires fewer function calls than the simplex algorithm even when the gradient must be estimated.

To demonstrate this algorithm, the Rosenbrock function is again used. The gradient of the Rosenbrock
function is the vector:

∂f

∂xj
=

NX
i=1

200
`
xi − x2

i−1

´
(δi,j − 2xi−1δi−1,j)− 2 (1− xi−1) δi−1,j .

= 200
`
xj − x2

j−1

´
− 400xj

`
xj+1 − x2

j

´
− 2 (1− xj) .

68



englishCHAPTER 6. A TOUR OF SCIPY 6.5. OPTIMIZATION (OPTIMIZE)

This expression is valid for the interior derivatives. Special cases are

∂f

∂x0
= −400x0

`
x1 − x2

0

´
− 2 (1− x0) ,

∂f

∂xN−1
= 200

`
xN−1 − x2

N−2

´
.

A Python function which computes this gradient is constructed by the code-segment:

>>> def rosen_der(x):

xm = x[1:-1]

xm_m1 = x[:-2]

xm_p1 = x[2:]

der = zeros(x.shape,x.typecode())

der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)

der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])

der[-1] = 200*(x[-1]-x[-2]**2)

return der

The calling signature for the BFGS minimization algorithm is similar to fmin with the addition of the
fprime argument. An example usage of fmin bfgs is shown in the following example which minimizes the
Rosenbrock function.

>>> from scipy.optimize import fmin_bfgs

>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]

>>> xopt = fmin_bfgs(rosen, x0, fprime=rosen_der)

Optimization terminated successfully.

Current function value: 0.000000

Iterations: 109

Function evaluations: 262

Gradient evaluations: 110

>>> print xopt

[ 1. 1. 1. 1. 1.]

6.5.3. Newton-Conjugate-Gradient (optimize.fmin ncg). The method which requires the fewest
function calls and is therefore often the fastest method to minimize functions of many variables is fmin ncg.
This method is a modified Newton’s method and uses a conjugate gradient algorithm to (approximately) invert
the local Hessian. Newton’s method is based on fitting the function locally to a quadratic form:

f (x) ≈ f (x0) +∇f (x0) · (x− x0) +
1

2
(x− x0)

T H (x0) (x− x0) .

where H (x0) is a matrix of second-derivatives (the Hessian). If the Hessian is positive definite then the local
minimum of this function can be found by setting the gradient of the quadratic form to zero, resulting in

xopt = x0 −H−1∇f.

The inverse of the Hessian is evaluted using the conjugate-gradient method. An example of employing this
method to minimizing the Rosenbrock function is given below. To take full advantage of the NewtonCG
method, a function which computes the Hessian must be provided. The Hessian matrix itself does not need to
be constructed, only a vector which is the product of the Hessian with an arbitrary vector needs to be available
to the minimization routine. As a result, the user can provide either a function to compute the Hessian matrix,
or a function to compute the product of the Hessian with an arbitrary vector.

6.5.3.1. Full Hessian example: The Hessian of the Rosenbrock function is

Hij =
∂2f

∂xi∂xj
= 200 (δi,j − 2xi−1δi−1,j)− 400xi (δi+1,j − 2xiδi,j)− 400δi,j

`
xi+1 − x2

i

´
+ 2δi,j ,

=
`
202 + 1200x2

i − 400xi+1

´
δi,j − 400xiδi+1,j − 400xi−1δi−1,j ,

69



6.5. OPTIMIZATION (OPTIMIZE) englishCHAPTER 6. A TOUR OF SCIPY

if i, j ∈ [1, N − 2] with i, j ∈ [0, N − 1] defining the N ×N matrix. Other non-zero entries of the matrix are

∂2f

∂x2
0

= 1200x2
0 − 400x1 + 2,

∂2f

∂x0∂x1
=

∂2f

∂x1∂x0
= −400x0,

∂2f

∂xN−1∂xN−2
=

∂2f

∂xN−2∂xN−1
= −400xN−2,

∂2f

∂x2
N−1

= 200.

For example, the Hessian when N = 5 is

H =

266664
1200x2

0 − 400x1 + 2 −400x0 0 0 0
−400x0 202 + 1200x2

1 − 400x2 −400x1 0 0
0 −400x1 202 + 1200x2

2 − 400x3 −400x2 0
0 −400x2 202 + 1200x2

3 − 400x4 −400x3

0 0 0 −400x3 200

377775 .

The code which computes this Hessian along with the code to minimize the function using fmin ncg is shown
in the following example:

>>> from scipy.optimize import fmin_ncg

>>> def rosen_hess(x):

x = asarray(x)

H = diag(-400*x[:-1],1) - diag(400*x[:-1],-1)

diagonal = zeros(len(x),x.typecode())

diagonal[0] = 1200*x[0]-400*x[1]+2

diagonal[-1] = 200

diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]

H = H + diag(diagonal)

return H

>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]

>>> xopt = fmin_ncg(rosen, x0, rosen_der, fhess=rosen_hess)

Optimization terminated successfully.

Current function value: 0.000000

Iterations: 19

Function evaluations: 40

Gradient evaluations: 19

Hessian evaluations: 19

>>> print xopt

[ 0.9999 0.9999 0.9998 0.9996 0.9991]

6.5.3.2. Hessian product example: For larger minimization problems, storing the entire Hessian matrix can
consume considerable time and memory. The Newton-CG algorithm only needs the product of the Hessian times
an arbitrary vector. As a result, the user can supply code to compute this product rather than the full Hessian
by setting the fhess p keyword to the desired function. The fhess p function should take the minimization
vector as the first argument and the arbitrary vector as the second argument. Any extra arguments passed to
the function to be minimized will also be passed to this function. If possible, using Newton-CG with the hessian
product option is probably the fastest way to minimize the function.

In this case, the product of the Rosenbrock Hessian with an arbitrary vector is not difficult to compute. If
p is the arbitrary vector, then H (x)p has elements:

H (x)p =

26666664

`
1200x2

0 − 400x1 + 2
´
p0 − 400x0p1

...
−400xi−1pi−1 +

`
202 + 1200x2

i − 400xi+1

´
pi − 400xipi+1

...
−400xN−2pN−2 + 200pN−1

37777775 .

Code which makes use of the fhess p keyword to minimize the Rosenbrock function using fmin ncg follows:

70



englishCHAPTER 6. A TOUR OF SCIPY 6.5. OPTIMIZATION (OPTIMIZE)

>>> from scipy.optimize import fmin_ncg

>>> def rosen_hess_p(x,p):

x = asarray(x)

Hp = zeros(len(x),x.typecode())

Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]

Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] \

-400*x[1:-1]*p[2:]

Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1]

return Hp

>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]

>>> xopt = fmin_ncg(rosen, x0, rosen_der, fhess_p=rosen_hess_p)

Optimization terminated successfully.

Current function value: 0.000000

Iterations: 20

Function evaluations: 42

Gradient evaluations: 20

Hessian evaluations: 44

>>> print xopt

[ 1. 1. 1. 0.9999 0.9999]

6.5.4. Least-square fitting (minimize.leastsq). All of the previously-explained minimization proce-
dures can be used to solve a least-squares problem provided the appropriate objective function is constructed.
For example, suppose it is desired to fit a set of data {xi,yi} to a known model, y = f (x,p) where p is a vector
of parameters for the model that need to be found. A common method for determining which parameter vector
gives the best fit to the data is to minimize the sum of squares of the residuals. The residual is usually defined
for each observed data-point as

ei (p,yi,xi) = ‖yi − f (xi,p)‖ .

An objective function to pass to any of the previous minization algorithms to obtain a least-squares fit is.

J (p) =

N−1X
i=0

e2
i (p) .

The leastsq algorithm performs this squaring and summing of the residuals automatically. It takes as an
input argument the vector function e (p) and returns the value of p which minimizes J (p) = eT e directly. The
user is also encouraged to provide the Jacobian matrix of the function (with derivatives down the columns or
across the rows). If the Jacobian is not provided, it is estimated.

An example should clarify the usage. Suppose it is believed some measured data follow a sinusoidal pattern

yi = A sin (2πkxi + θ)

where the parameters A, k, and θ are unknown. The residual vector is

ei = |yi −A sin (2πkxi + θ)| .

By defining a function to compute the residuals and (selecting an appropriate starting position), the least-squares

fit routine can be used to find the best-fit parameters Â, k̂, θ̂. This is shown in the following example and a
plot of the results is shown in Figure 6.5.1.

>>> x = arange(0,6e-2,6e-2/30)

>>> A,k,theta = 10, 1.0/3e-2, pi/6

>>> y_true = A*sin(2*pi*k*x+theta)

>>> y_meas = y_true + 2*randn(len(x))

>>> def residuals(p, y, x):

A,k,theta = p

err = y-A*sin(2*pi*k*x+theta)

return err

>>> def peval(x, p):

return p[0]*sin(2*pi*p[1]*x+p[2])

>>> p0 = [8, 1/2.3e-2, pi/3]

71



6.5. OPTIMIZATION (OPTIMIZE) englishCHAPTER 6. A TOUR OF SCIPY

>>> print array(p0)

[ 8. 43.4783 1.0472]

>>> from scipy.optimize import leastsq

>>> plsq = leastsq(residuals, p0, args=(y_meas, x))

>>> print plsq[0]

[ 10.9437 33.3605 0.5834]

>>> print array([A, k, theta])

[ 10. 33.3333 0.5236]

>>> from xplt import * # Only on X-windows systems

>>> plot(x,peval(x,plsq[0]),x,y_meas,’o’,x,y_true)

>>> title(’Least-squares fit to noisy data’)

>>> legend([’Fit’, ’Noisy’, ’True’])

>>> gist.eps(’leastsqfit’) # Make epsi file.

0.00 0.01 0.02 0.03 0.04 0.05

-10

-5

 0

 5

 10

Least-squares fit to noisy data

Fit
Noisy
True

Figure 6.5.1. Least-square fitting to noisy data using scipy.optimize.leastsq

6.5.5. Scalar function minimizers. Often only the minimum of a scalar function is needed (a scalar
function is one that takes a scalar as input and returns a scalar output). In these circumstances, other opti-
mization techniques have been developed that can work faster.

6.5.5.1. Unconstrained minimization (optimize.brent). There are actually two methods that can be used to
minimize a scalar function (brent and golden), but golden is included only for academic purposes and should
rarely be used. The brent method uses Brent’s algorithm for locating a minimum. Optimally a bracket should
be given which contains the minimum desired. A bracket is a triple (a, b, c) such that f (a) > f (b) < f (c) and
a < b < c. If this is not given, then alternatively two starting points can be chosen and a bracket will be found
from these points using a simple marching algorithm. If these two starting points are not provided 0 and 1

72



englishCHAPTER 6. A TOUR OF SCIPY 6.6. INTERPOLATION

will be used (this may not be the right choice for your function and result in an unexpected minimum being
returned).

6.5.5.2. Bounded minimization (optimize.fminbound). Thus far all of the minimization routines described
have been unconstrained minimization routines. Very often, however, there are constraints that can be placed
on the solution space before minimization occurs. The fminbound function is an example of a constrained min-
imization procedure that provides a rudimentary interval constraint for scalar functions. The interval constraint
allows the minimization to occur only between two fixed endpoints.

For example, to find the minimum of J1 (x) near x = 5, fminbound can be called using the interval [4, 7]
as a constraint. The result is xmin = 5.3314:

>>> from scipy.special import j1

>>> from scipy.optimize import fminbound

>>> xmin = fminbound(j1, 4, 7)

>>> print xmin

5.33144184241

6.5.6. Root finding.
6.5.6.1. Sets of equations. To find the roots of a polynomial, the command roots is useful. To find a root

of a set of non-linear equations, the command optimize.fsolve is needed. For example, the following example
finds the roots of the single-variable transcendental equation

x + 2 cos (x) = 0,

and the set of non-linear equations

x0 cos (x1) = 4,

x0x1 − x1 = 5.

The results are x = −1.0299 and x0 = 6.5041, x1 = 0.9084.

>>> def func(x):

return x + 2*cos(x)

>>> def func2(x):

out = [x[0]*cos(x[1]) - 4]

out.append(x[1]*x[0] - x[1] - 5)

return out

>>> from optimize import fsolve

>>> x0 = fsolve(func, 0.3)

>>> print x0

-1.02986652932

>>> x02 = fsolve(func2, [1, 1])

>>> print x02

[ 6.5041 0.9084]

6.5.6.2. Scalar function root finding. If one has a single-variable equation, there are four different root finder
algorithms that can be tried. Each of these root finding algorithms requires the endpoints of an interval where
a root is suspected (because the function changes signs). In general brentq is the best choice, but the other
methods may be useful in certain circumstances or for academic purposes.

6.5.6.3. Fixed-point solving. A problem closely related to finding the zeros of a function is the problem of
finding a fixed-point of a function. A fixed point of a function is the point at which evaluation of the function
returns the point: g (x) = x. Clearly the fixed point of g is the root of f (x) = g (x)− x. Equivalently, the root
of f is the fixed point of g (x) = f (x) + x. The routine fixed point provides a simple iterative method using
Aitkens sequence acceleration to estimate the fixed point of g given a starting point.

6.6. Interpolation (interpolate)

There are two general interpolation facilities available in SciPy. The first facility is an interpolation class
which performs linear 1-dimensional interpolation. The second facility is based on the FORTRAN library
FITPACK and provides functions for 1- and 2-dimensional (smoothed) cubic-spline interpolation.

73



6.6. INTERPOLATION englishCHAPTER 6. A TOUR OF SCIPY

6.6.1. Linear 1-d interpolation (interpolate.linear 1d). The linear 1d class in scipy.interpolate is a
convenient method to create a function based on fixed data points which can be evaluated anywhere within
the domain defined by the given data using linear interpolation. An instance of this class is created by passing
the 1-d vectors comprising the data. The instance of this class defines a call method and can therefore by
treated like a function which interpolates between known data values to obtain unknown values (it even has a
docstring for help). Behavior at the boundary can be specified at instantiation time. The following example
demonstrates it’s use.

>>> x = arange(0,10)

>>> y = exp(-x/3.0)

>>> f = interpolate.linear_1d(x,y)

>>> help(f)

Instance of class: linear_1d

<name>(x_new)

Find linearly interpolated y_new = <name>(x_new).

Inputs:

x_new -- New independent variables.

Outputs:

y_new -- Linearly interpolated values corresponding to x_new.

>>> xnew = arange(0,9,0.1)

>>> xplt.plot(x,y,’x’,xnew,f(xnew),’.’)

Figure shows the result:

 0  2  4  6  8
0.0

0.2

0.4

0.6

0.8

1.0

Actual
Interpolated

Figure 6.6.1. One-dimensional interpolation using the class interpolate.linear 1d.

74



englishCHAPTER 6. A TOUR OF SCIPY 6.6. INTERPOLATION

6.6.2. Spline interpolation in 1-d (interpolate.splXXX). Spline interpolation requires two essential
steps: (1) a spline representation of the curve is computed, and (2) the spline is evaluated at the desired points.
In order to find the spline representation, there are two different was to represent a curve and obtain (smoothing)
spline coefficients: directly and parametrically. The direct method finds the spline representation of a curve
in a two-dimensional plane using the function interpolate.splrep. The first two arguments are the only ones
required, and these provide the x and y components of the curve. The normal output is a 3-tuple, (t, c, k),
containing the knot-points, t, the coefficients c and the order k of the spline. The default spline order is cubic,
but this can be changed with the input keyword, k.

For curves in N -dimensional space the function interpolate.splprep allows defining the curve paramet-
rically. For this function only 1 input argument is required. This input is a list of N -arrays representing the
curve in N -dimensional space. The length of each array is the number of curve points, and each array provides
one component of the N -dimensional data point. The parameter variable is given with the keword argument, u,
which defaults to an equally-spaced monotonic sequence between 0 and 1. The default output consists of two
objects: a 3-tuple, (t, c, k), containing the spline representation and the parameter variable u.

The keyword argument, s, is used to specify the amount of smoothing to perform during the spline fit. The
default value of s is s = m−

√
2m where m is the number of data-points being fit. Therefore, if no smoothing

is desired a value of s = 0 should be passed to the routines.
Once the spline representation of the data has been determined, functions are available for evaluating the

spline (interpolate.splev) and its derivatives (interpolate.splev, interpolate.splade) at any point and the
integral of the spline between any two points (interpolate.splint). In addition, for cubic splines (k = 3)
with 8 or more knots, the roots of the spline can be estimated (interpolate.sproot). These functions are
demonstrated in the example that follows (see also Figure 6.6.2).

>>> # Cubic-spline

>>> x = arange(0,2*pi+pi/4,2*pi/8)

>>> y = sin(x)

>>> tck = interpolate.splrep(x,y,s=0)

>>> xnew = arange(0,2*pi,pi/50)

>>> ynew = interpolate.splev(xnew,tck,der=0)

>>> xplt.plot(x,y,’x’,xnew,ynew,xnew,sin(xnew),x,y,’b’)

>>> xplt.legend([’Linear’,’Cubic Spline’, ’True’],[’b-x’,’m’,’r’])

>>> xplt.limits(-0.05,6.33,-1.05,1.05)

>>> xplt.title(’Cubic-spline interpolation’)

>>> xplt.eps(’interp_cubic’)

>>> # Derivative of spline

>>> yder = interpolate.splev(xnew,tck,der=1)

>>> xplt.plot(xnew,yder,xnew,cos(xnew),’|’)

>>> xplt.legend([’Cubic Spline’, ’True’])

>>> xplt.limits(-0.05,6.33,-1.05,1.05)

>>> xplt.title(’Derivative estimation from spline’)

>>> xplt.eps(’interp_cubic_der’)

>>> # Integral of spline

>>> def integ(x,tck,constant=-1):

>>> x = asarray_1d(x)

>>> out = zeros(x.shape, x.typecode())

>>> for n in xrange(len(out)):

>>> out[n] = interpolate.splint(0,x[n],tck)

>>> out += constant

>>> return out

>>>

>>> yint = integ(xnew,tck)

>>> xplt.plot(xnew,yint,xnew,-cos(xnew),’|’)

>>> xplt.legend([’Cubic Spline’, ’True’])

>>> xplt.limits(-0.05,6.33,-1.05,1.05)

>>> xplt.title(’Integral estimation from spline’)

>>> xplt.eps(’interp_cubic_int’)

>>> # Roots of spline

75



6.6. INTERPOLATION englishCHAPTER 6. A TOUR OF SCIPY

 0  1  2  3  4  5  6

-1.0

-0.5

0.0

0.5

1.0

X Linear
Cubic Spline
True

Cubic-spline interpolation

(a) Cubic-spline (splrep)

 0  1  2  3  4  5  6

-1.0

-0.5

0.0

0.5

1.0

Cubic Spline
True

Derivative estimation frm spline

(b) Derivative of spline (splev)

 0  1  2  3  4  5  6

-1.0

-0.5

0.0

0.5

1.0

Cubic Spline
True

Integral estimation from spline

(c) Integral of spline (splint)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

X Linear
Cubic Spline
True

Spline of parametrically-defined curve

(d) Spline of parametric curve (splprep)

Figure 6.6.2. Examples of using cubic-spline interpolation.

>>> print interpolate.sproot(tck)

[ 0. 3.1416]

>>> # Parametric spline

>>> t = arange(0,1.1,.1)

>>> x = sin(2*pi*t)

>>> y = cos(2*pi*t)

>>> tck,u = interpolate.splprep([x,y],s=0)

>>> unew = arange(0,1.01,0.01)

>>> out = interpolate.splev(unew,tck)

>>> xplt.plot(x,y,’x’,out[0],out[1],sin(2*pi*unew),cos(2*pi*unew),x,y,’b’)

>>> xplt.legend([’Linear’,’Cubic Spline’, ’True’],[’b-x’,’m’,’r’])

>>> xplt.limits(-1.05,1.05,-1.05,1.05)

76



englishCHAPTER 6. A TOUR OF SCIPY 6.6. INTERPOLATION

>>> xplt.title(’Spline of parametrically-defined curve’)

>>> xplt.eps(’interp_cubic_param’)

6.6.3. Two-dimensionsal spline representation (interpolate.bisplrep). For (smooth) spline-fitting
to a two dimensional surface, the function interpolate.bisplrep is available. This function takes as required
inputs the 1-D arrays x, y, and z which represent points on the surface z = f (x, y) . The default output is a
list [tx, ty, c, kx, ky] whose entries represent respectively, the components of the knot positions, the coefficients
of the spline, and the order of the spline in each coordinate. It is convenient to hold this list in a single object,
tck, so that it can be passed easily to the function interpolate.bisplev. The keyword, s, can be used to change
the amount of smoothing performed on the data while determining the appropriate spline. The default value is
s = m−

√
2m where m is the number of data points in the x, y, and z vectors. As a result, if no smoothing is

desired, then s = 0 should be passed to interpolate.bisplrep.
To evaluate the two-dimensional spline and it’s partial derivatives (up to the order of the spline), the

function interpolate.bisplev is required. This function takes as the first two arguments two 1-D arrays
whose cross-product specifies the domain over which to evaluate the spline. The third argument is the tck list
returned from interpolate.bisplrep. If desired, the fourth and fifth arguments provide the orders of the partial
derivative in the x and y direction respectively.

It is important to note that two dimensional interpolation should not be used to find the spline representation
of images. The algorithm used is not amenable to large numbers of input points. The signal processing toolbox
contains more appropriate algorithms for finding the spline representation of an image. The two dimensional
interpolation commands are intended for use when interpolating a two dimensional function as shown in the
example that follows (See also Figure 6.6.3). This example uses the mgrid command in SciPy which is useful
for defining a “mesh-grid” in many dimensions. (See also the ogrid command if the full-mesh is not needed).
The number of output arguments and the number of dimensions of each argument is determined by the number
of indexing objects passed in mgrid[].

>>> # Define function over sparse 20x20 grid

>>> x,y = mgrid[-1:1:20j,-1:1:20j]

>>> z = (x+y)*exp(-6.0*(x*x+y*y))

>>> xplt.surf(z,x,y,shade=1,palette=’rainbow’)

>>> xplt.title3("Sparsely sampled function.")

>>> xplt.eps("2d_func")

>>> # Interpolate function over new 70x70 grid

>>> xnew,ynew = mgrid[-1:1:70j,-1:1:70j]

>>> tck = interpolate.bisplrep(x,y,z,s=0)

>>> znew = interpolate.bisplev(xnew[:,0],ynew[0,:],tck)

>>> xplt.surf(znew,xnew,ynew,shade=1,palette=’rainbow’)

>>> xplt.title3("Interpolated function.")

>>> xplt.eps("2d_interp")

Sparsely sampled function. Interpolated function.

Figure 6.6.3. Example of two-dimensional spline interpolation.

77



6.7. SIGNAL PROCESSING englishCHAPTER 6. A TOUR OF SCIPY

6.7. Signal Processing (signal)

The signal processing toolbox currently contains some filtering functions, a limited set of filter design tools,
and a few B-spline interpolation algorithms for one- and two-dimensional data. While the B-spline algorithms
could technically be placed under the interpolation category, they are included here because they only work
with equally-spaced data and make heavy use of filter-theory and transfer-function formalism to provide a fast
B-spline transform. To understand this section you will need to understand that a signal in SciPy is an array
of real or complex numbers.

6.7.1. B-splines. A B-spline is an approximation of a continuous function over a finite-domain in terms of
B-spline coefficients and knot points. If the knot-points are equally spaced with spacing ∆x, then the B-spline
approximation to a 1-dimensional function is the finite-basis expansion.

y (x) ≈
X

j

cjβ
o
“ x

∆x
− j
”

.

In two dimensions with knot-spacing ∆x and ∆y, the function representation is

z (x, y) ≈
X

j

X
k

cjkβo
“ x

∆x
− j
”

βo

„
y

∆y
− k

«
.

In these expressions, βo (·) is the space-limited B-spline basis function of order, o. The requirement of equally-
spaced knot-points and equally-spaced data points, allows the development of fast (inverse-filtering) algorithms
for determining the coefficients, cj , from sample-values, yn. Unlike the general spline interpolation algorithms,
these algorithms can quickly find the spline coefficients for large images.

The advantage of representing a set of samples via B-spline basis functions is that continuous-domain
operators (derivatives, re-sampling, integral, etc.) which assume that the data samples are drawn from an
underlying continuous function can be computed with relative ease from the spline coefficients. For example,
the second-derivative of a spline is

y′′ (x) =
1

∆x2

X
j

cjβ
o′′
“ x

∆x
− j
”

.

Using the property of B-splines that

d2βo (w)

dw2
= βo−2 (w + 1)− 2βo−2 (w) + βo−2 (w − 1)

it can be seen that

y′′ (x) =
1

∆x2

X
j

cj

h
βo−2

“ x

∆x
− j + 1

”
− 2βo−2

“ x

∆x
− j
”

+ βo−2
“ x

∆x
− j − 1

”i
.

If o = 3, then at the sample points,

∆x2 y′ (x)
˛̨
x=n∆x

=
X

j

cjδn−j+1 − 2cjδn−j + cjδn−j−1,

= cn+1 − 2cn + cn−1.

Thus, the second-derivative signal can be easily calculated from the spline fit. if desired, smoothing splines can
be found to make the second-derivative less sensitive to random-errors.

The savvy reader will have already noticed that the data samples are related to the knot coefficients via
a convolution operator, so that simple convolution with the sampled B-spline function recovers the original
data from the spline coefficients. The output of convolutions can change depending on how boundaries are
handled (this becomes increasingly more important as the number of dimensions in the data-set increases).
The algorithms relating to B-splines in the signal-processing sub package assume mirror-symmetric boundary
conditions. Thus, spline coefficients are computed based on that assumption, and data-samples can be recovered
exactly from the spline coefficients by assuming them to be mirror-symmetric also.

Currently the package provides functions for determining second- and third-order cubic spline coefficients
from equally spaced samples in one- and two-dimensions (signal.qspline1d, signal.qspline2d, signal.cspline1d,
signal.cspline2d). The package also supplies a function (signal.bspline) for evaluating the bspline basis func-
tion, βo (x) for arbitrary order and x. For large o, the B-spline basis function can be approximated well by a
zero-mean Gaussian function with standard-deviation equal to σo = (o + 1) /12:

βo (x) ≈ 1√
2πσ2

o

exp

„
− x2

2σo

«
.

A function to compute this Gaussian for arbitrary x and o is also available (signal.gauss spline). The fol-
lowing code and Figure uses spline-filtering to compute an edge-image (the second-derivative of a smoothed

78



englishCHAPTER 6. A TOUR OF SCIPY 6.7. SIGNAL PROCESSING

spline) of Lena’s face which is an array returned by the command lena(). The command signal.sepfir2d was
used to apply a separable two-dimensional FIR filter with mirror-symmetric boundary conditions to the spline
coefficients. This function is ideally suited for reconstructing samples from spline coefficients and is faster than
signal.convolve2d which convolves arbitrary two-dimensional filters and allows for choosing mirror-symmetric
boundary conditions.

>>> image = lena().astype(Float32)

>>> derfilt = array([1.0,-2,1.0],Float32)

>>> ck = signal.cspline2d(image,8.0)

>>> deriv = signal.sepfir2d(ck, derfilt, [1]) + \

>>> signal.sepfir2d(ck, [1], derfilt)

>>>

>>> ## Alternatively we could have done:

>>> ## laplacian = array([[0,1,0],[1,-4,1],[0,1,0]],Float32)

>>> ## deriv2 = signal.convolve2d(ck,laplacian,mode=’same’,boundary=’symm’)

>>>

>>> xplt.imagesc(image[::-1]) # flip image so it looks right-side up.

>>> xplt.title(’Original image’)

>>> xplt.eps(’lena_image’)

>>> xplt.imagesc(deriv[::-1])

>>> xplt.title(’Output of spline edge filter’)

>>> xplt.eps(’lena_edge’)

 0  100  200  300  400  500
 0

 100

 200

 300

 400

 500

Original image

 0  100  200  300  400  500
 0

 100

 200

 300

 400

 500

Output of spline edge filter

Figure 6.7.1. Example of using smoothing splines to filter images.

6.7.2. Filtering. Filtering is a generic name for any system that modifies an input signal in some way. In
SciPy a signal can be thought of as a Numeric array. There are different kinds of filters for different kinds of
operations. There are two broad kinds of filtering operations: linear and non-linear. Linear filters can always be
reduced to multiplication of the flattened Numeric array by an appropriate matrix resulting in another flattened
Numeric array. Of course, this is not usually the best way to compute the filter as the matrices and vectors
involved may be huge. For example filtering a 512 × 512 image with this method would require multiplication
of a 5122x5122matrix with a 5122 vector. Just trying to store the 5122× 5122 matrix using a standard Numeric
array would require 68, 719, 476, 736 elements. At 4 bytes per element this would require 256GB of memory. In
most applications most of the elements of this matrix are zero and a different method for computing the output
of the filter is employed.

6.7.2.1. Convolution/Correlation. Many linear filters also have the property of shift-invariance. This means
that the filtering operation is the same at different locations in the signal and it implies that the filtering matrix

79



6.7. SIGNAL PROCESSING englishCHAPTER 6. A TOUR OF SCIPY

can be constructed from knowledge of one row (or column) of the matrix alone. In this case, the matrix
multiplication can be accomplished using Fourier transforms.

Let x [n] define a one-dimensional signal indexed by the integer n. Full convolution of two one-dimensional
signals can be expressed as

y [n] =

∞X
k=−∞

x [k] h [n− k] .

This equation can only be implemented directly if we limit the sequences to finite support sequences that can
be stored in a computer, choose n = 0 to be the starting point of both sequences, let K + 1 be that value for
which y [n] = 0 for all n > K + 1 and M + 1 be that value for which x [n] = 0 for all n > M + 1, then the
discrete convolution expression is

y [n] =

min(n,K)X
k=max(n−M,0)

x [k] h [n− k] .

For convenience assume K ≥ M. Then, more explicitly the output of this operation is

y [0] = x [0] h [0]

y [1] = x [0] h [1] + x [1] h [0]

y [2] = x [0] h [2] + x [1] h [1] + x [2] h [0]

...
...

...

y [M ] = x [0] h [M ] + x [1] h [M − 1] + · · ·+ x [M ] h [0]

y [M + 1] = x [1] h [M ] + x [2] h [M − 1] + · · ·+ x [M + 1] h [0]

...
...

...

y [K] = x [K −M ] h [M ] + · · ·+ x [K] h [0]

y [K + 1] = x [K + 1−M ] h [M ] + · · ·+ x [K] h [1]

...
...

...

y [K + M − 1] = x [K − 1] h [M ] + x [K] h [M − 1]

y [K + M ] = x [K] h [M ] .

Thus, the full discrete convolution of two finite sequences of lengths K + 1 and M + 1 respectively results in a
finite sequence of length K + M + 1 = (K + 1) + (M + 1)− 1.

One dimensional convolution is implemented in SciPy with the function signal.convolve. This function
takes as inputs the signals x, h, and an optional flag and returns the signal y. The optional flag allows for
specification of which part of the output signal to return. The default value of ’full’ returns the entire signal.
If the flag has a value of ’same’ then only the middle K values are returned starting at y

ˆ¨
M−1

2

˝˜
so that

the output has the same length as the largest input. If the flag has a value of ’valid’ then only the middle
K − M + 1 = (K + 1) − (M + 1) + 1 output values are returned where z depends on all of the values of the
smallest input from h [0] to h [M ] . In other words only the values y [M ] to y [K] inclusive are returned.

This same function signal.convolve can actually take N -dimensional arrays as inputs and will return the
N -dimensional convolution of the two arrays. The same input flags are available for that case as well.

Correlation is very similar to convolution except for the minus sign becomes a plus sign. Thus

w [n] =

∞X
k=−∞

y [k] x [n + k]

is the (cross) correlation of the signals y and x. For finite-length signals with y [n] = 0 outside of the range [0, K]
and x [n] = 0 outside of the range [0, M ] , the summation can simplify to

w [n] =

min(K,M−n)X
k=max(0,−n)

y [k] x [n + k] .

80



englishCHAPTER 6. A TOUR OF SCIPY 6.7. SIGNAL PROCESSING

Assuming again that K ≥ M this is

w [−K] = y [K] x [0]

w [−K + 1] = y [K − 1] x [0] + y [K] x [1]

...
...

...

w [M −K] = y [K −M ] x [0] + y [K −M + 1] x [1] + · · ·+ y [K] x [M ]

w [M −K + 1] = y [K −M − 1] x [0] + · · ·+ y [K − 1] x [M ]

...
...

...

w [−1] = y [1] x [0] + y [2] x [1] + · · ·+ y [M + 1] x [M ]

w [0] = y [0] x [0] + y [1] x [1] + · · ·+ y [M ] x [M ]

w [1] = y [0] x [1] + y [1] x [2] + · · ·+ y [M − 1] x [M ]

w [2] = y [0] x [2] + y [1] x [3] + · · ·+ y [M − 2] x [M ]

...
...

...

w [M − 1] = y [0] x [M − 1] + y [1] x [M ]

w [M ] = y [0] x [M ] .

The SciPy function signal.correlate implements this operation. Equivalent flags are available for this
operation to return the full K + M + 1 length sequence (’full’) or a sequence with the same size as the largest
sequence starting at w

ˆ
−K +

¨
M−1

2

˝˜
(’same’) or a sequence where the values depend on all the values of the

smallest sequence (’valid’). This final option returns the K −M + 1 values w [M −K] to w [0] inclusive.
The function signal.correlate can also take arbitrary N -dimensional arrays as input and return the N -

dimensional convolution of the two arrays on output.
When N = 2, signal.correlate and/or signal.convolve can be used to construct arbitrary image filters

to perform actions such as blurring, enhancing, and edge-detection for an image.
Convolution is mainly used for filtering when one of the signals is much smaller than the other (K � M),

otherwise linear filtering is more easily accomplished in the frequency domain (see Fourier Transforms).
6.7.2.2. Difference-equation filtering. A general class of linear one-dimensional filters (that includes convo-

lution filters) are filters described by the difference equation

NX
k=0

aky [n− k] =

MX
k=0

bkx [n− k]

where x [n] is the input sequence and y [n] is the output sequence. If we assume initial rest so that y [n] = 0 for
n < 0, then this kind of filter can be implemented using convolution. However, the convolution filter sequence
h [n] could be infinite if ak 6= 0 for k ≥ 1. In addition, this general class of linear filter allows initial conditions
to be placed on y [n] for n < 0 resulting in a filter that cannot be expressed using convolution.

The difference equation filter can be thought of as finding y [n] recursively in terms of it’s previous values

a0y [n] = −a1y [n− 1]− · · · − aNy [n−N ] + · · ·+ b0x [n] + · · ·+ bMx [n−M ] .

Often a0 = 1 is chosen for normalization. The implementation in SciPy of this general difference equation filter
is a little more complicated then would be implied by the previous equation. It is implemented so that only one
signal needs to be delayed. The actual implementation equations are (assuming a0 = 1).

y [n] = b0x [n] + z0 [n− 1]

z0 [n] = b1x [n] + z1 [n− 1]− a1y [n]

z1 [n] = b2x [n] + z2 [n− 1]− a2y [n]

...
...

...

zK−2 [n] = bK−1x [n] + zK−1 [n− 1]− aK−1y [n]

zK−1 [n] = bKx [n]− aKy [n] ,

where K = max (N, M) . Note that bK = 0 if K > M and aK = 0 if K > N. In this way, the output at time n
depends only on the input at time n and the value of z0 at the previous time. This can always be calculated as
long as the K values z0 [n− 1] . . . zK−1 [n− 1] are computed and stored at each time step.

The difference-equation filter is called using the command signal.lfilter in SciPy. This command takes as
inputs the vector b, the vector, a, a signal x and returns the vector y (the same length as x) computed using

81



6.7. SIGNAL PROCESSING englishCHAPTER 6. A TOUR OF SCIPY

the equation given above. If x is N -dimensional, then the filter is computed along the axis provided. If, desired,
initial conditions providing the values of z0 [−1] to zK−1 [−1] can be provided or else it will be assumed that
they are all zero. If initial conditions are provided, then the final conditions on the intermediate variables are
also returned. These could be used, for example, to restart the calculation in the same state.

Sometimes it is more convenient to express the initial conditions in terms of the signals x [n] and y [n] . In
other words, perhaps you have the values of x [−M ] to x [−1] and the values of y [−N ] to y [−1] and would like
to determine what values of zm [−1] should be delivered as initial conditions to the difference-equation filter. It
is not difficult to show that for 0 ≤ m < K,

zm [n] =

K−m−1X
p=0

(bm+p+1x [n− p]− am+p+1y [n− p]) .

Using this formula we can find the intial condition vector z0 [−1] to zK−1 [−1] given initial conditions on y (and
x). The command signal.lfiltic performs this function.

6.7.2.3. Other filters. The signal processing package provides many more filters as well.
Median Filter. A median filter is commonly applied when noise is markedly non-Gaussian or when it is

desired to preserve edges. The median filter works by sorting all of the array pixel values in a rectangular
region surrounding the point of interest. The sample median of this list of neighborhood pixel values is used as
the value for the output array. The sample median is the middle array value in a sorted list of neighborhood
values. If there are an even number of elements in the neighborhood, then the average of the middle two values
is used as the median. A general purpose median filter that works on N-dimensional arrays is signal.medfilt.
A specialized version that works only for two-dimensional arrays is available as signal.medfilt2d.

Order Filter. A median filter is a specific example of a more general class of filters called order filters. To
compute the output at a particular pixel, all order filters use the array values in a region surrounding that pixel.
These array values are sorted and then one of them is selected as the output value. For the median filter, the
sample median of the list of array values is used as the output. A general order filter allows the user to select
which of the sorted values will be used as the output. So, for example one could choose to pick the maximum in
the list or the minimum. The order filter takes an additional argument besides the input array and the region
mask that specifies which of the elements in the sorted list of neighbor array values should be used as the output.
The command to perform an order filter is signal.order filter.

Wiener filter. The Wiener filter is a simple deblurring filter for denoising images. This is not the Wiener
filter commonly described in image reconstruction problems but instead it is a simple, local-mean filter. Let x
be the input signal, then the output is

y =

(
σ2

σ2
x
mx +

“
1− σ2

σ2
x

”
x σ2

x ≥ σ2,

mx σ2
x < σ2.

Where mx is the local estimate of the mean and σ2
x is the local estimate of the variance. The window for these

estimates is an optional input parameter (default is 3× 3). The parameter σ2 is a threshold noise parameter. If
σ is not given then it is estimated as the average of the local variances.

Hilbert filter. The Hilbert transform constructs the complex-valued analytic signal from a real signal. For
example if x = cos ωn then y = hilbert (x) would return (except near the edges) y = exp (jωn) . In the frequency
domain, the hilbert transform performs

Y = X ·H

where H is 2 for positive frequencies, 0 for negative frequencies and 1 for zero-frequencies.
Detrend.

6.7.3. Filter design.
6.7.3.1. Finite-impulse response design.
6.7.3.2. Inifinite-impulse response design.
6.7.3.3. Analog filter frequency response.
6.7.3.4. Digital filter frequency response.

6.7.4. Linear Time-Invariant Systems.
6.7.4.1. LTI Object.
6.7.4.2. Continuous-Time Simulation.
6.7.4.3. Step response.
6.7.4.4. Impulse response.

82



englishCHAPTER 6. A TOUR OF SCIPY 6.10. LINEAR ALGEBRA

6.8. Input/Output

6.8.1. Binary.
6.8.1.1. Arbitrary binary input and output (fopen).
6.8.1.2. Read and write Matlab .mat files.
6.8.1.3. Saving workspace.

6.8.2. Text-file.
6.8.2.1. Read text-files (read array).
6.8.2.2. Write a text-file (write array).

6.9. Fourier Transforms

6.9.1. One-dimensional.

6.9.2. Two-dimensional.

6.9.3. N-dimensional.

6.9.4. Shifting.

6.9.5. Sample frequencies.

6.9.6. Hilbert transform.

6.9.7. Tilbert transform.

6.10. Linear Algebra

When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear
algebra capabilities. If you dig deep enough, all of the raw lapack and blas libraries are available for your use
for even more speed. In this section, some easier-to-use interfaces to these routines are described.

All of these linear algebra routines expect an object that can be converted into a 2-dimensional array. The
output of these routines is also a two-dimensional array. There is a matrix class defined in Numeric that scipy
inherits and extends. You can initialize this class with an appropriate Numeric array in order to get objects for
which multiplication is matrix-multiplication instead of the default, element-by-element multiplication.

6.10.1. Matrix Class. The matrix class is initialized with the SciPy command mat which is just con-
venient short-hand for Matrix.Matrix. If you are going to be doing a lot of matrix-math, it is convenient to
convert arrays into matrices using this command. One convencience of using the mat command is that you
can enter two-dimensional matrices using MATLAB-like syntax with commas or spaces separating columns and
semicolons separting rows as long as the matrix is placed in a string passed to mat.

6.10.2. Basic routines.
6.10.2.1. Finding Inverse. The inverse of a matrix A is the matrix B such that AB = I where I is the

identity matrix consisting of ones down the main diagonal. Usually B is denoted B = A−1. In SciPy, the matrix
inverse of the Numeric array, A, is obtained using linalg.inv(A), or using A.I if A is a Matrix. For example,
let

A =

24 1 3 5
2 5 1
2 3 8

35
then

A−1 =
1

25

24 −37 9 22
14 2 −9
4 −3 1

35 =

24 −1.48 0.36 0.88
0.56 0.08 −0.36
0.16 −0.12 0.04

35 .

The following example demonstrates this computation in SciPy

>>> A = mat(’[1 3 5; 2 5 1; 2 3 8]’)

>>> A

Matrix([[1, 3, 5],

[2, 5, 1],

[2, 3, 8]])

>>> A.I

Matrix([[-1.48, 0.36, 0.88],

[ 0.56, 0.08, -0.36],

[ 0.16, -0.12, 0.04]])

83



6.10. LINEAR ALGEBRA englishCHAPTER 6. A TOUR OF SCIPY

>>> linalg.inv(A)

array([[-1.48, 0.36, 0.88],

[ 0.56, 0.08, -0.36],

[ 0.16, -0.12, 0.04]])

6.10.2.2. Solving linear system. Solving linear systems of equations is straightforward using the scipy com-
mand linalg.solve. This command expects an input matrix and a right-hand-side vector. The solution vector
is then computed. An option for entering a symmetrix matrix is offered which can speed up the processing when
applicable. As an example, suppose it is desired to solve the following simultaneous equations:

x + 3y + 5z = 10

2x + 5y + z = 8

2x + 3y + 8z = 3

We could find the solution vector using a matrix inverse:24 x
y
z

35 =

24 1 3 5
2 5 1
2 3 8

35−1 24 10
8
3

35 =
1

25

24 −232
129
19

35 =

24 −9.28
5.16
0.76

35 .

However, it is better to use the linalg.solve command which can be faster and more numerically stable. In this
case it gives the same answer as shown in the following example:

>>> A = mat(’[1 3 5; 2 5 1; 2 3 8]’)

>>> b = mat(’[10;8;3]’)

>>> A.I*b

Matrix([[-9.28],

[ 5.16],

[ 0.76]])

>>> linalg.solve(A,b)

array([[-9.28],

[ 5.16],

[ 0.76]])

6.10.2.3. Finding Determinant. The determinant of a square matrix A is often denoted |A| and is a quantity
often used in linear algebra. Suppose aij are the elements of the matrix A and let Mij = |Aij | be the determinant
of the matrix left by removing the ith row and jthcolumn from A. Then for any row i,

|A| =
X

j

(−1)i+j aijMij .

This is a recursive way to define the determinant where the base case is defined by accepting that the determinant
of a 1× 1 matrix is the only matrix element. In SciPy the determinant can be calculated with linalg.det. For
example, the determinant of

A =

24 1 3 5
2 5 1
2 3 8

35
is

|A| = 1

˛̨̨̨
5 1
3 8

˛̨̨̨
− 3

˛̨̨̨
2 1
2 8

˛̨̨̨
+ 5

˛̨̨̨
2 5
2 3

˛̨̨̨
= 1 (5 · 8− 3 · 1)− 3 (2 · 8− 2 · 1) + 5 (2 · 3− 2 · 5) = −25.

In SciPy this is computed as shown in this example:

>>> A = mat(’[1 3 5; 2 5 1; 2 3 8]’)

>>> linalg.det(A)

-25.000000000000004

6.10.2.4. Computing norms. Matrix and vector norms can also be computed with SciPy. A wide range of
norm definitions are available using different parameters to the order argument of linalg.norm. This function
takes a rank-1 (vectors) or a rank-2 (matrices) array and an optional order argument (default is 2). Based on
these inputs a vector or matrix norm of the requested order is computed.

84



englishCHAPTER 6. A TOUR OF SCIPY 6.10. LINEAR ALGEBRA

For vector x, the order parameter can be any real number including inf or -inf. The computed norm is

‖x‖ =

8><>:
max |xi| ord = inf
min |xi| ord = −inf“P

i |xi|ord
”1/ord

|ord| < ∞.

For matrix A the only valid values for norm are ±2,±1, ±inf, and ’fro’ (or ’f’) Thus,

‖A‖ =

8>>>>>>>><>>>>>>>>:

maxi

P
j |aij | ord = inf

mini

P
j |aij | ord = −inf

maxj

P
i |aij | ord = 1

minj

P
i |aij | ord = −1

max σi ord = 2
min σi ord = −2p

trace (AHA) ord = ’fro’

where σi are the singular values of A.
6.10.2.5. Solving linear least-squares problems and pseudo-inverses. Linear least-squares problems occur in

many branches of applied mathematics. In this problem a set of linear scaling coefficients is sought that allow
a model to fit data. In particular it is assumed that data yi is related to data xi through a set of coefficients cj

and model functions fj (xi) via the model

yi =
X

j

cjfj (xi) + εi

where εi represents uncertainty in the data. The strategy of least squares is to pick the coefficients cj to minimize

J (c) =
X

i

˛̨̨̨
˛yi −

X
j

cjfj (xi)

˛̨̨̨
˛
2

.

Theoretically, a global minimum will occur when

∂J

∂c∗n
= 0 =

X
i

 
yi −

X
j

cjfj (xi)

!
(−f∗n (xi))

or X
j

cj

X
i

fj (xi) f∗n (xi) =
X

i

yif
∗
n (xi)

AHAc = AHy

where
{A}ij = fj (xi) .

When AHA is invertible, then

c =
“
AHA

”−1

AHy = A†y

where A† is called the pseudo-inverse of A. Notice that using this definition of A the model can be written

y = Ac + ε.

The command linalg.lstsq will solve the linear least squares problem for c given A and y. In addition
linalg.pinv or linalg.pinv2 (uses a different method based on singular value decomposition) will find A†

given A.
The following example Fig. 6.10.1 demonstrate the use of linalg.lstsq and linalg.pinv for solving a data-

fitting problem. The data shown below were generated using the model:

yi = c1e
−xi + c2xi

where xi = 0.1i for i = 1 . . . 10, c1 = 5, and c2 = 4. Noise is added to yi and the coefficients c1 and c2 are
estimated using linear least squares.

c1,c2= 5.0,2.0

i = r_[1:11]

xi = 0.1*i

yi = c1*exp(-xi)+c2*xi

zi = yi + 0.05*max(yi)*randn(len(yi))

A = c_[exp(-xi)[:,NewAxis],xi[:,NewAxis]]

85



6.10. LINEAR ALGEBRA englishCHAPTER 6. A TOUR OF SCIPY

c,resid,rank,sigma = linalg.lstsq(A,zi)

xi2 = r_[0.1:1.0:100j]

yi2 = c[0]*exp(-xi2) + c[1]*xi2

xplt.plot(xi,zi,’x’,xi2,yi2)

xplt.limits(0,1.1,3.0,5.5)

xplt.xlabel(’x_i’)

xplt.title(’Data fitting with linalg.lstsq’)

xplt.eps(’lstsq_fit’)

0.0 0.2 0.4 0.6 0.8 1.0

3.0

3.5

4.0

4.5

5.0

5.5

xi

Data fitting with linalg.lstsq

Figure 6.10.1. Least squares fitting example

6.10.2.6. Generalized inverse. The generalized inverse is calculated using the command linalg.pinv or
linalg.pinv2. These two commands differ in how they compute the generalized inverse. The first uses the
linalg.lstsq algorithm while the second uses singular value decomposition. Let A be an M ×N matrix, then if
M > N the generalized inverse is

A† =
“
AHA

”−1

AH

while if M < N matrix the generalized inverse is

A# = AH
“
AAH

”−1

.

In both cases for M = N , then

A† = A# = A−1

as long as A is invertible.

6.10.3. Decompositions. In many applications it is useful to decompose a matrix using other represen-
tations. There are several decompositions supported by SciPy.

86



englishCHAPTER 6. A TOUR OF SCIPY 6.10. LINEAR ALGEBRA

6.10.3.1. Eigenvalues and eigenvectors. The eigenvalue-eigenvector problem is one of the most commonly
employed linear algebra operations. In one popular form, the eigenvalue-eigenvector problem is to find for some
square matrix A scalars λ and corresponding vectors v such that

Av = λv.

For an N×N matrix, there are N (not necessarily distinct) eigenvalues — roots of the (characteristic) polynomial

|A− λI| = 0.

The eigenvectors, v, are also sometimes called right eigenvectors to distinguish them from another set of
left eigenvectors that satisfy

vH
L A = λvH

L

or

AHvL = λ∗vL.

With it’s default optional arguments, the command linalg.eig returns λ and v. However, it can also return vL

and just λ by itself (linalg.eigvals returns just λ as well).
In addtion, linalg.eig can also solve the more general eigenvalue problem

Av = λBv

AHvL = λ∗BHvL

for square matrices A and B. The standard eigenvalue problem is an example of the general eigenvalue problem
for B = I. When a generalized eigenvalue problem can be solved, then it provides a decomposition of A as

A = BVΛV−1

where V is the collection of eigenvectors into columns and Λ is a diagonal matrix of eigenvalues.
By definition, eigenvectors are only defined up to a constant scale factor. In SciPy, the scaling factor for

the eigenvectors is chosen so that ‖v‖2 =
P

i v2
i = 1.

As an example, consider finding the eigenvalues and eigenvectors of the matrix

A =

24 1 5 2
2 4 1
3 6 2

35 .

The characteristic polynomial is

|A− λI| = (1− λ) [(4− λ) (2− λ)− 6]−
5 [2 (2− λ)− 3] + 2 [12− 3 (4− λ)]

= −λ3 + 7λ2 + 8λ− 3.

The roots of this polynomial are the eigenvalues of A:

λ1 = 7.9579

λ2 = −1.2577

λ3 = 0.2997.

The eigenvectors corresponding to each eigenvalue can be found using the original equation. The eigenvectors
associated with these eigenvalues can then be found.

>>> A = mat(’[1 5 2; 2 4 1; 3 6 2]’)

>>> la,v = linalg.eig(A)

>>> l1,l2,l3 = la

>>> print l1, l2, l3

(7.95791620491+0j) (-1.25766470568+0j) (0.299748500767+0j)

>>> print v[:,0]

array([-0.5297, -0.4494, -0.7193])

>>> print v[:,1]

[-0.9073 0.2866 0.3076]

>>> print v[:,2]

[ 0.2838 -0.3901 0.8759]

>>> print sum(abs(v**2),axis=0)

[ 1. 1. 1.]

>>> v1 = mat(v[:,0]).T

87



6.10. LINEAR ALGEBRA englishCHAPTER 6. A TOUR OF SCIPY

>>> print max(ravel(abs(A*v1-l1*v1)))

4.4408920985e-16

6.10.3.2. Singular value decomposition. Singular Value Decompostion (SVD) can be thought of as an ex-
tension of the eigenvalue problem to matrices that are not square. Let A be an M ×N matrix with M and N
arbitrary. The matrices AHA and AAH are square hermitian matrices3 of size N ×N and M ×M respectively.
It is known that the eigenvalues of square hermitian matrices are real and non-negative. In addtion, there are
at most min (M, N) identical non-zero eigenvalues of AHA and AAH . Define these positive eigenvalues as σ2

i .
The square-root of these are called singular values of A. The eigenvectors of AHA are collected by columns into
an N × N unitary4 matrix V while the eigenvectors of AAH are collected by columns in the unitary matrix
U, the singular values are collected in an M ×N zero matrix Σ with main diagonal entries set to the singular
values. Then

A = UΣVH

is the singular-value decomposition of A. Every matrix has a singular value decomposition. Sometimes, the
singular values are called the spectrum of A. The command linalg.svd will return U, VH , and σi as an array
of the singular values. To obtain the matrix Σ use linalg.diagsvd. The following example illustrates the use
of linalg.svd.

>>> A = mat(’[1 3 2; 1 2 3]’)

>>> M,N = A.shape

>>> U,s,Vh = linalg.svd(A)

>>> Sig = mat(diagsvd(s,M,N))

>>> U, Vh = mat(U), mat(Vh)

>>> print U

Matrix([[-0.7071, -0.7071],

[-0.7071, 0.7071]])

>>> print Sig

Matrix([[ 5.1962, 0. , 0. ],

[ 0. , 1. , 0. ]])

>>> print Vh

Matrix([[-0.2722, -0.6804, -0.6804],

[-0. , -0.7071, 0.7071],

[-0.9623, 0.1925, 0.1925]])

>>> print A

Matrix([[1, 3, 2],

[1, 2, 3]])

>>> print U*Sig*Vh

Matrix([[ 1., 3., 2.],

[ 1., 2., 3.]])

6.10.3.3. LU decomposition. The LU decompostion finds a representation for the M ×N matrix A as

A = PLU

where P is an M ×M permutation matrix (a permutation of the rows of the identity matrix), L is in M ×K
lower triangular or trapezoidal matrix (K = min (M, N)) with unit-diagonal, and U is an upper triangular or
trapezoidal matrix. The SciPy command for this decomposition is linalg.lu.

Such a decomposition is often useful for solving many simultaneous equations where the left-hand-side does
not change but the right hand side does. For example, suppose we are going to solve

Axi = bi

for many different bi. The LU decomposition allows this to be written as

PLUxi = bi.

Because L is lower-triangular, the equation can be solved for Uxi and finally xi very rapidly using forward-
and back-substitution. An initial time spent factoring A allows for very rapid solution of similar systems of
equations in the future. If the intent for performing LU decomposition is for solving linear systems then the
command linalg.lu factor should be used followed by repeated applications of the command linalg.lu solve
to solve the system for each new right-hand-side.

3A hermition matrix D satisfies DH = D.
4A unitary matrix D satisfies DHD = I = DDH so that D−1 = DH .

88



englishCHAPTER 6. A TOUR OF SCIPY 6.10. LINEAR ALGEBRA

6.10.3.4. Cholesky decomposition. Cholesky decomposition is a special case of LU decomposition applicable
to Hermitian positive definite matrices. When A = AH and xHAx ≥ 0 for all x, then decompositions of A can
be found so that

A = UHU

A = LLH

where L is lower-triangular and U is upper triangular. Notice that L = UH . The command linagl.cholesky
computes the cholesky factorization. For using cholesky factorization to solve systems of equations there are also
linalg.cho factor and linalg.cho solve routines that work similarly to their LU decomposition counterparts.

6.10.3.5. QR decomposition. The QR decomposition (sometimes called a polar decomposition) works for
any M ×N array and finds an M ×M unitary matrix Q and an M ×N upper-trapezoidal matrix R such that

A = QR.

Notice that if the SVD of A is known then the QR decomposition can be found

A = UΣVH = QR

implies that Q = U and R = ΣVH . Note, however, that in SciPy independent algorithms are used to find QR
and SVD decompositions. The command for QR decomposition is linalg.qr.

6.10.3.6. Schur decomposition. For a square N×N matrix, A, the Schur decomposition finds (not-necessarily
unique) matrices T and Z such that

A = ZTZH

where Z is a unitary matrix and T is either upper-triangular or quasi-upper triangular depending on whether
or not a real schur form or complex schur form is requested. For a real schur form both T and Z are real-valued
when A is real-valued. When A is a real-valued matrix the real schur form is only quasi-upper triangular because
2× 2 blocks extrude from the main diagonal corresponding to any complex-valued eigenvalues. The command
linalg.schur finds the Schur decomposition while the command linalg.rsf2csf converts T and Z from a real
Schur form to a complex Schur form. The Schur form is especially useful in calculating functions of matrices.

The following example illustrates the schur decomposition:

>>> A = mat(’[1 3 2; 1 4 5; 2 3 6]’)

>>> T,Z = linalg.schur(A)

>>> T1,Z1 = linalg.schur(A,’complex’)

>>> T2,Z2 = linalg.rsf2csf(T,Z)

>>> print T

Matrix([[ 9.9001, 1.7895, -0.655 ],

[ 0. , 0.5499, -1.5775],

[ 0. , 0.5126, 0.5499]])

>>> print T2

Matrix([[ 9.9001+0.j , -0.3244+1.5546j, -0.8862+0.569j ],

[ 0. +0.j , 0.5499+0.8993j, 1.0649-0.j ],

[ 0. +0.j , 0. +0.j , 0.5499-0.8993j]])

>>> print abs(T1-T2) # different

[[ 0. 2.1184 0.1949]

[ 0. 0. 1.2676]

[ 0. 0. 0. ]]

>>> print abs(Z1-Z2) # different

[[ 0.0683 1.1175 0.1973]

[ 0.1186 0.5644 0.247 ]

[ 0.1262 0.7645 0.1916]]

>>> T,Z,T1,Z1,T2,Z2 = map(mat,(T,Z,T1,Z1,T2,Z2))

>>> print abs(A-Z*T*Z.H)

Matrix([[ 0., 0., 0.],

[ 0., 0., 0.],

[ 0., 0., 0.]])

>>> print abs(A-Z1*T1*Z1.H)

Matrix([[ 0., 0., 0.],

[ 0., 0., 0.],

[ 0., 0., 0.]])

>>> print abs(A-Z2*T2*Z2.H)

Matrix([[ 0., 0., 0.],

89



6.10. LINEAR ALGEBRA englishCHAPTER 6. A TOUR OF SCIPY

[ 0., 0., 0.],

[ 0., 0., 0.]])

6.10.4. Matrix Functions. Consider the function f (x) with Taylor series expansion

f (x) =

∞X
k=0

f (k) (0)

k!
xk.

A matrix function can be defined using this Taylor series for the square matrix A as

f (A) =

∞X
k=0

f (k) (0)

k!
Ak.

While, this serves as a useful representation of a matrix function, it is rarely the best way to calculate a matrix
function.

6.10.4.1. Exponential and logarithm functions. The matrix exponential is one of the more common matrix
functions. It can be defined for square matrices as

eA =

∞X
k=0

1

k!
Ak.

The command linalg.expm3 uses this Taylor series definition to compute the matrix exponential. Due to poor
convergence properties it is not often used.

Another method to compute the matrix exponential is to find an eigenvalue decomposition of A:

A = VΛV−1

and note that

eA = VeΛV−1

where the matrix exponential of the diagonal matrix Λ is just the exponential of its elements. This method is
implemented in linalg.expm2.

The preferred method for implementing the matrix exponential is to use scaling and a PadÃ c© approximation
for ex. This algorithm is implemented as linalg.expm.

The inverse of the matrix exponential is the matrix logarithm defined as the inverse of the matrix exponen-
tial.

A ≡ exp (log (A)) .

The matrix logarithm can be obtained with linalg.logm.
6.10.4.2. Trigonometric functions. The trigonometric functions sin, cos, and tan are implemented for ma-

trices in linalg.sinm, linalg.cosm, and linalg.tanm respectively. The matrix sin and cosine can be defined
using Euler’s identity as

sin (A) =
ejA − e−jA

2j

cos (A) =
ejA + e−jA

2
.

The tangent is

tan (x) =
sin (x)

cos (x)
= [cos (x)]−1 sin (x)

and so the matrix tangent is defined as

[cos (A)]−1 sin (A) .

6.10.4.3. Hyperbolic trigonometric functions. The hyperbolic trigonemetric functions sinh, cosh, and tanh
can also be defined for matrices using the familiar definitions:

sinh (A) =
eA − e−A

2

cosh (A) =
eA + e−A

2

tanh (A) = [cosh (A)]−1 sinh (A) .

These matrix functions can be found using linalg.sinhm, linalg.coshm, and linalg.tanhm.

90



englishCHAPTER 6. A TOUR OF SCIPY 6.13. SOME EXAMPLES

6.10.4.4. Arbitrary function. Finally, any arbitrary function that takes one complex number and returns
a complex number can be called as a matrix function using the command linalg.funm. This command takes
the matrix and an arbitrary Python function. It then implements an algorithm from Golub and Van Loan’s
book “Matrix Computations” to compute function applied to the matrix using a Schur decomposition. Note
that the function needs to accept complex numbers as input in order to work with this algorithm. For example
the following code computes the zeroth-order Bessel function applied to a matrix.

>>> A = rand(3,3)

>>> B = linalg.funm(A,lambda x: special.jv(0,real(x)))

>>> print A

[[ 0.0593 0.5612 0.4403]

[ 0.8797 0.2556 0.1452]

[ 0.964 0.9666 0.1243]]

>>> print B

[[ 0.8206 -0.1212 -0.0612]

[-0.1323 0.8256 -0.0627]

[-0.2073 -0.1946 0.8516]]

6.11. Statistics

SciPy has a tremendous number of basic statistics routines with more easily added by the end user (if you
create one please contribute it). All of the statistics functions are located in the sub-package stats and a fairly
complete listing of these functions can be had using info(stats).

6.11.1. Random Variables. There are two general distribution classes that have been implemented for
encapsulating continuous random variables and discrete random variables. Over 80 continuous random variables
and 10 discrete random variables have been implemented using these classes. The list of the random variables
available is in the docstring for the stats sub-package. A detailed description of each of them is also located in
the files continuous.lyx and discrete.lyx in the stats sub-directories.

6.12. Interfacing with the Python Imaging Library

If you have the Python Imaging Library (PIL) installed, SciPy provides some convenient functions that
make use of it’s facilities particularly for reading, writing, displaying, and rotating images. In SciPy an image is
always a two- or three-dimensional array. Gray-scale, and colormap images are always two-dimensional arrays
while RGB images are three-dimensional with the third dimension specifying the channel.

Commands available include

• fromimage — convert a PIL image to a Numeric array
• toimage — convert Numeric array to PIL image
• imsave — save Numeric array to an image file
• imread — read an image file into a Numeric array
• imrotate — rotate an image (a Numeric array) counter-clockwise
• imresize — resize an image using the PIL
• imshow — external viewer of a Numeric array (using PIL)
• imfilter — fast, simple built-in filters provided by PIL
• radon — simple radon transform based on imrotate

6.13. Some examples

"""Simple data fitting and smoothing example"""

from scipy import exp , arange ,array , linspace

from RandomArray import normal

from scipy.optimize import leastsq

from scipy.interpolate import splrep ,splev

import pylab as P

parsTrue = array ([2.0, -.76, 0.1])

distance = linspace(0, 4, 1000)

91



6.13. SOME EXAMPLES englishCHAPTER 6. A TOUR OF SCIPY

def func(pars):

a, alpha , k = pars

return a*exp(alpha*distance) + k

def errfunc(pars):

return data - func(pars) #return the error

# some pseudo data; add some noise

data = func(parsTrue) + normal (0.0, 0.1, distance.shape)

# the intial guess of the params

guess = 1.0, -.4, 0.0

# now solve for the best fit paramters

best , info , ier , mesg = leastsq(errfunc , guess , full_output =1)

print ’true’, parsTrue

print ’best’, best

print ’|err|_l2 =’,P.l2norm(parsTrue -best)

# scipy’s splrep uses FITPACK ’s curfit (B-spline interpolation)

print ’Spline smoothing of the data’

sp = splrep(distance ,data)

smooth = splev(distance ,sp)

print ’Spline information (see splrep and splev for details):’,sp

# Now use pylab to plot

P.figure ()

P.plot(distance ,data ,label=’Noisy data’)

P.plot(distance ,func(best),lw=2,label=’Best fit’)

P.legend ()

P.figure ()

P.plot(distance ,data ,label=’Noisy data’)

P.plot(distance ,smooth ,lw=2,label=’Spline -smoothing ’)

P.legend ()

P.show()

import scipy as S

import pylab as P

# poly1d objects are constructed from coefficients , highest -order first.

coefs = [ 1. , -3.5, -0.5, 11. , -17. , 6. ]

pol = S.poly1d(coefs)

roots = pol.r

print ’Polynomial p(x):\n’,pol ,’\n’

print ’p(x) built with coefs:’,coefs

print ’Roots of p(x):’,roots

# Plot p(x)

x = P.frange(-4,4,npts =400)

y = pol(x)

92



englishCHAPTER 6. A TOUR OF SCIPY 6.13. SOME EXAMPLES

P.figure ()

P.axhline(0,color=’g’)

P.axvline(0,color=’g’)

P.plot(x,y,’b-’)

# Show roots

P.scatter(roots.real ,roots.imag ,s=80,c=’r’)

# Set limits and grid to make the plot clear

P.ylim (-40,40)

P.grid()

# Display on screen

P.show()

"""Plot some Bessel functions of integer order , using Scipy and pylab"""

import scipy as S

import pylab as P

# shorthand

special = S.special

def jn_asym(n,x):

"""Asymptotic form of jn(x) for x>>n"""

return S.sqrt (2.0/S.pi/x)*S.cos(x-(n*S.pi/2.0+S.pi/4.0))

# build a range of values to plot in

x = P.frange (0,30,npts =400)

# Start by plotting the well -known j0 and j1

P.figure ()

P.plot(x,special.j0(x),label=’j0’)

P.plot(x,special.j1(x),label=’j1’)

# Show a higher -order Bessel function

n = 5

P.plot(x,special.jn(n,x),label=’j%s’ % n)

# and compute its asymptotic form (valid for x>>n, where n is the order). We

# must first find the valid range of x where at least x>n:

x_asym = S.compress(x>n,x)

P.plot(x_asym ,jn_asym(n,x_asym),label=’j%s (asymptotic)’ % n)

# Finish off the plot

P.legend ()

P.title(’Bessel Functions ’)

# horizontal line at 0 to show x-axis , but after the legend

P.axhline (0)

# EXERCISE: redo the above , for the asymptotic range 0<x<<n. The asymptotic

# form in this regime is

93



6.13. SOME EXAMPLES englishCHAPTER 6. A TOUR OF SCIPY

# J(n,x) = (1/ gamma(n+1))(x/2)^n

# Now , let’s verify numerically the recursion relation

# J(n+1,x) = (2n/x)J(n,x)-J(n-1,x)

jn = special.jn # just a shorthand

# Be careful to check only for x!=0, to avoid divisions by zero

xp = S.compress(x>0.0,x) # positive x

# construct both sides of the recursion relation , these should be equal

j_np1 = jn(n+1,xp)

j_np1_rec = (2.0*n/xp)*jn(n,xp)-jn(n-1,xp)

# Now make a nice error plot of the difference , in a new figure

P.figure ()

P.semilogy(xp,abs(j_np1 -j_np1_rec),’r+-’)

P.title(’Error in recursion for J%s’ % n)

P.grid()

# Don’t forget a show() call at the end of the script

P.show()

94



CHAPTER 7

3D visualization with MayaVi

Chapter contributed by Prabhu Ramachandran

7.1. Introduction

MayaVi is a scientific data visualizer. It is written in Python <http://www.python.org> and uses the
Visualization Toolkit (VTK) <http://www.vtk.org/> for the visualization. An easy to use GUI using Tkin-
ter <http://www.pythonware.com/library/tkinter/introduction/index.htm> is provided. MayaVi is free
software and is distributed under the conditions of the BSD license <http://www.opensource.org/licenses/

bsd-license.html>. It is also cross platform and should run on any platform where both Python and VTK
are available (which is almost any *nix, Mac OSX or Windows).

In Sanskrit ”Mayavi” means magician. The name wasn’t exactly chosen for its meaning but was the result
of a long and hard search with the author pestering a lot of people for suggestions. My sincere thanks to all of
those who offered suggestions.

MayaVi has a quite a few useful features:

• An easy to use GUI.
• MayaVi can be used as a Python module from other Python programs. MayaVi can also be used

interactively from the Python interpreter.
• Provides modules to visualize grids, scalar and vector data fields. Rudimentary tensor support is also

available.
• It provides support for any VTK dataset using the VTK data format <http://www.vtk.org/pdf/

file-formats.pdf>. This includes rectilinear, structured and unstructured grid data and also polyg-
onal data. Both the original VTK data formats and the new XML formats are supported.

• Support for PLOT3D data. Both ASCII and binary files work. Only the structured grid format works
because of current limitations in the vtkPLOT3DReader. Simple support for multi-block data is also
incorporated.

• Support for EnSight data. EnSight6 and EnSightGold formats are supported. Only single parts are
supported at this time.

• Many datasets can be used simultaneously.
• Multiple visualization modules can be used simultaneously.
• Quite a few basic data filters are also provided.
• Supports volume visualization of data via texture and ray cast mappers.
• Support for importing a simple VRML scene or a 3D Studio file. Texturing is not yet supported due

to limitations in VTK’s vtkVRMLImporter.
• A pipeline browser with which one can browse and edit objects in the VTK pipeline. A segmented

pipeline browser is used to make it easier to look at parts of the VTK pipeline.
• A modular design so one can add ones own modules and filters.
• A Lookup Table editor to customize lookup tables easily while visualizing data!
• The visualization (or a part of it) can be saved and reloaded in the future.
• Export the visualized scene to a Post Script file, PPM/BMP/TIFF/JPEG/PNG image, Open Inven-

tor, Geomview OOGL, VRML files or RenderMan RIB files. It is also possible to save the scene to
a vector graphic via GL2PS <http://www.geuz.org/gl2ps>. This is only available if VTK is built
with GL2PS support.

• Support for picking data points or cells and also configuring the lighting of the visualization.

And a lot more. MayaVi is free software and hence can be modified to do things differently. The rest of this
manual will provide information on how to use it.

95

http://www.python.org
http://www.vtk.org/
http://www.pythonware.com/library/tkinter/introduction/index.htm
http://www.opensource.org/licenses/bsd-license.html
http://www.opensource.org/licenses/bsd-license.html
http://www.vtk.org/pdf/file-formats.pdf
http://www.vtk.org/pdf/file-formats.pdf
http://www.geuz.org/gl2ps


7.2. GETTING STARTED englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI

7.2. Getting started

MayaVi is a pretty powerful tool. This chapter describes the GUI that MayaVi provides and the way to
use it. This chapter gets you started using MayaVi.

7.2.1. Starting MayaVi. Under *nix if your installation is setup such that the script mayavi is on the
system wide path just run the executable mayavi anywhere. If not, change the current directory to the directory
where MayaVi was installed and run:

If you have an already saved MayaVi visualization in some file, say saved_viz.mv you can start MayaVi
using that file like so:

Under Windows visit the directory where MayaVi was installed and double click on the executable mayavi.pyw.
If your installation went well this should start MayaVi.

If you have problems running MayaVi, consult the MayaVi home page and look at the Installation sections.
You can also ask for help at the mailing list or ask the author.

7.2.2. Command line arguments.
7.2.2.1. Basic options. This section lists some simple useful command line options

mayavi --display DISPLAY: Use DISPLAY for the X display. This option makes sense only when
running MayaVi under X.

mayavi -g WIDTHxHEIGHT+XOFF+YOFF: Set the geometry of the main window when it is launched. The
arguments that can be passed follow the standard X convention and include the width, height, x offset
and y offset of the window. This option is also available through --geometry.

mayavi -h: This prints all the available command line options and exits. Also available through --help.

mayavi -V: This prints the MayaVi version on the command line and exits. Also available through
--version.

mayavi filename.mv: This loads a previously saved MayaVi visualization.

7.2.2.2. Advanced options. This section lists some advanced command line options. This section is intended
for those who already understand how MayaVi works. If you are new to MayaVi it is recommended that you
read the rest of the guide and then get back here when you need more advanced command line options.

mayavi -d vtk_file.vtk: Opens a VTK file (even the new XML format is supported) passed as the
argument. Also available through --vtk.

mayavi -x plot3d_xyz_file: This opens a PLOT3D co-ordinate file passed as the argument. Also
available through --plot3d-xyz.

mayavi -q plot3d_q_file: This opens a PLOT3D solution file passed as the argument. Please note
that this option must always follow a -q or –plot3d-xyz option. Also available through --plot3d-q.

mayavi -e ensight_case_file: Opens an EnSight case file passed as the argument. Also available
through --ensight.

mayavi -m module-name: The passed module name is loaded in the current ModuleManager. The mod-
ule name must be a valid one if not you will get an error message. Also available through --module.

mayavi -f filter-name: The passed filter name is loaded in the current ModuleManager. The filter
name must be a valid one if not you will get an error message. Also available through --filter. If
the filter is the UserDefined filter then it could be specified as UserDefined:vtkSomeFilter where
vtkSomeFilter is a valid VTK class. In this case the filter will not prompt you for the VTK filter to
use.

96



englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI 7.3. USING MAYAVI

mayavi -z saved-visualization-file: Loads a previously saved MayaVi visualization file passed as
the argument. Also available through --viz and --visualization.

mayavi -M module-manager-file: Loads a module manager saved to a file. If a file that does not exist
is given this will simply create a new module manager that can be populated with filters and modules.
Also available through --module-mgr.

mayavi -w vrml2-file: Imports a VRML2 scene given an appropriate file. Also available through
--vrml.

mayavi -3 3DStudio-file: Imports a 3D Studio scene given an appropriate file. Also available through
--3ds.

mayavi -n: Creates a new window. Any options passed after this will apply to this newly created
window. Also available through --new-window.

7.2.2.3. Examples. Here are a few interesting examples.

This command loads an existing visualization.

This command loads the heart.mv saved visualization in one window, creates a new window and loads the
other.mv in the other.

> -M new -f Threshold -m IsoSurface \

> -n -d examples/heart.vtk -m Outline -m ContourGridPlane

This command loads a VTK data file called heart.vtk, loads the Axes, GridPlane modules in one ModuleManager.
Then creates a new ModuleManager and loads a Threshold filter and an IsoSurface module in it. It then opens
a new visualization window, loads the VTK data file, heart.vtk, the modules Outline and ContourGridPlane

in it.
The provided options make it possible to construct very useful visualizations from the command line.

7.2.3. The MayaVi Window. MayaVi provides an easy to use GUI. The picture shown below shows the
basic GUI that MayaVi provides. The regions marked out in red are to be noted. The top left shows a set of
menus. Below the menus is a control panel on the left and the actual visualization on the right. At the bottom
of the application window is a status bar that turns red when MayaVi is busy doing something. In between the
status bar and the visualization are provided a set of buttons that help control the visualization view.
Each section of the screen marked and described above provides important functionality.

Menu:
This provides a set of menus from which provide the user with bulk of the functionality.

Visualization:
This part of the screen is where the data is visualized using VTK.

Control Panel:
The control panel allows the user to configure and control the particular visualization. It provides

various lists for the user’s convenience. These are discussed in detail subsequently.
Status Bar:

This part of the screen indicates the status of MayaVi to the user. If MayaVi is busy doing
something this part of the screen will turn red and the cursor will change to a watch indicating that
MayaVi is busy.

View Modes:
These are a set of convenience buttons that help the user quickly see one particular view of the

visualization.

The next chapter deals with using MayaVi.

7.3. Using MayaVi

This chapter describes in detail the way to use MayaVi for your data visualization.

97



7.3. USING MAYAVI englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI

Figure 7.2.1. MayaVi window

7.3.1. The Basic Design of MayaVi. It is important to understand the basic design of MayaVi before
you use it. MayaVi is a data visualizer and the design reflects this. The basic design is simple and is described
in this section.

7.3.1.1. The Control Panel. The control panel needs to be understood before one can do anything serious
with MayaVi. This section describes the control panel in some detail.

• Associated with each data file that is to be visualized is an object called a DataVizManager. This
object is responsible for the datafile and the entire visualization associated with that data file. Each
DataVizManager instance is shown in the first list in the control panel.

• Each DataVizManager controls a set of ModuleManagers. These ModuleManagers are listed in the
second list from the top.

• Each ModuleManager controls set of two legends (one for scalar visualization and one for vector visu-
alization), a collection of Filters and a collection of Modules. Any number of Filters and Modules
can be used.

• A Filter is an object that filters out the data in some way or the other. A simple example is the
ExtractVectorNorm filter. This extracts the magnitude of the selected vector data field attribute for
the data file. All modules that use this as an input will receive the vector magnitude as the scalar
field data. The filters can be chosen from the Visualize menu. Each ModuleManager can have as many
filters as are required. When multiple filters are used, it is important to note that each filter sends
its data to the next filter in sequence. This could be problematic in some situations. Lets say there
is a structured grid object and that needs to be subsampled. We can use the ExtractGrid filter and
then display a GridPlane. Now we want to show contours but this time we want to threshold the

98



englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI 7.3. USING MAYAVI

Figure 7.3.1. MayaVi control panel

contours based on input scalars so we use the Threshold filter. If we put the Threshold filter in the
same ModuleManager, the grid will disappear since the Threshold output is an unstructured grid. So
to handle this we create a new ModuleManager (click the New button) and add the Threshold filter
in that ModuleManager. Put all the modules that use this filter in that ModuleManager.

• A Module is an object that actually visualizes the data. There are a large number of Modules that
can be used and these are also available from the Visualize menu. Each ModuleManager can have as
many modules as are required.

Although the above sounds complex, it really is not. It may just take a little getting used to before you are
completely comfortable with it. The following figure illustrates the above and clarifies matters.

If you have multiple DataVizManagers and want to see the ModuleManagers of one of them then you either
double click on the appropriate manager or single click on the manager and click on the Show Pipeline for the
DataVizManagers and on the Show for the ModuleManagers.

The other GUI buttons and features are all rather self explanatory. There are only a few points that need
to be made in order to make this description complete:

• The creation and deletion of a DataVizManager is controlled via the File menu. The open menu items
will create a new DataVizManager and the Close menu item will close the selected DataVizManager

and all its ModuleManagers. The Close All menu item will close all the DataVizManagers.
• The addition and deletion of ModuleManagers, can be done using the New and Delete buttons in the

control panel.
• Filters and Modules can be added from the Visualize menu and the corresponding Filters and Modules

the sub menus. They can be deleted from the control panel.
• Filters and Modules can be configured by either double clicking on the corresponding item or by

selecting the item and clicking on the configure button.

7.3.2. Data formats. MayaVi is a data visualizer and one first needs to have data to visualize anything.
MayaVi supports the following data formats:

VTK data format <http://www.vtk.org/pdf/file-formats.pdf>:

99

http://www.vtk.org/pdf/file-formats.pdf


7.3. USING MAYAVI englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI

MayaVi supports any VTK dataset using the VTK data format <http://www.vtk.org/pdf/

file-formats.pdf>. This includes rectilinear, structured and unstructured grid data and also polyg-
onal data. Please refer the linked document for details on the VTK data format. The new VTK XML
data format is also supported by MayaVi.

PLOT3D data:
MayaVi supports PLOT3D file format with binary structured grid data. The other PLOT3D

datasets will not work due to limitations in VTK’s vtkPLOT3DReader. Simple support for multi-
block data is also incorporated.

EnSight data:
MayaVi supports EnSight data. EnSight6 and EnSightGold formats are supported. Only single

parts are supported at this time.

In addition to this MayaVi allows one to import VRML2 files and 3D Studio files. Texturing is not yet supported
due to limitations in VTK’s vtkVRMLImporter.

Those interested in converting data arrays under Python into VTK files should look at Pearu Peterson’s
pyVTK <http://cens.ioc.ee/projects/pyvtk/> Python module.

MayaVi ships with a simple example of a heart CT scan data in the VTK data format (this should be in the
examples/ directory). The dataset used is a structured points dataset with a scalar field. This can be used as a
simple reference. More VTK, PLOT3D and EnSight data samples should be available from the VTK download
page <http://www.vtk.org/get-software.php>.

7.3.3. Opening a data file. Once data suitable for MayaVi is available one can begin the visualization.
If you don’t have data then please note that MayaVi ships with a simple example of a heart CT scan data
in the VTK data format (this should be in the examples/ directory). The dataset used is a structured points
dataset with a scalar field. More VTK, PLOT3D and EnSight data samples should be available from the VTK
download page <http://www.vtk.org/get-software.php>.

The first thing to do is load an appropriate data file. Visit the File menu and choose the appropriate menu
item for the data you have and select the file you want from the resulting GUI. Once you do this, you will notice
that the control panel will show a DataVizManager at the topmost list and you will see a lot of controls below
this. The control panel is described in some detail in this section. If you aren’t familiar with that section yet,
this might be a good time to review it.

Once the data file is opened a dialog box will pop up that allows one to configure the datafile. One can
choose the appropriate data field one is interested in. This configuration window can be closed when unnecessary.
To reconfigure the data use the Configure Data button provided in the control panel. Only one scalar attribute
and one vector attribute is supported at a given time. Each DataVizManager that is seen represents a different
file. One can open as many data files as one wants. Different data types can be loaded simultaneously too.
Using a similar procedure one can import a simple VRML2 scene or even a 3D studio file. To close a VRML or
3D Studio file choose the appropriate file in the Close menu.

MayaVi also supports time series data. If the file name ends with an integer, MayaVi treats this integer
as a time index. All files in the same directory as the loaded file are scanned. If any of them share the same
pattern (without the last integer) as the name of the opened file, then the files are treated as part of the time
series. These files are then sorted. The Configure Data GUI automatically addes a slider to switch between
these time steps and an auto-sweep button to sweep through the time series.

Once the data file is read and a DataVizManager is created an instance of a ModuleManager is also created.
At this point one has to load the Filters and the Modules in order to do the visualization.

7.3.4. Visualizing the Data. Once the data file has been opened and the appropriate field attribute for
both scalars and vectors has been chosen one can either filter the data or one can directly apply a module to
the data and visualize it. MayaVi provides a large number of Modules and a few Filters. They are described in
more detail subsequently.

In order to Filter the data one must use the Visualize menu and from the Filters sub-menu choose the
appropriate filter. As soon as a filter is requested a popup window will appear that helps you configure the
particular filter. Please note that it is not at all necessary to filter the data. If no filtering is required one does
not need to load any filter. Even if a filter is used one can delete it at any time using the controls provided in
the control panel.

In order to use a particular visualization module a procedure similar to the one for Filters is used. One
merely uses the Visualize menu and from the Modules sub-menu chooses the appropriate Module. The module
might take a little while to load. If there is some kind of error a warning dialog will attempt to describe the
problem and hopefully the user can correct the situation.

100

http://www.vtk.org/pdf/file-formats.pdf
http://www.vtk.org/pdf/file-formats.pdf
http://cens.ioc.ee/projects/pyvtk/
http://www.vtk.org/get-software.php
http://www.vtk.org/get-software.php


englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI 7.3. USING MAYAVI

7.3.4.1. Navigating the Visualization. It is important to be able to navigate the data and view it appro-
priately. In MayaVi this is achieved in one of two ways. Using the standard view mode buttons provided at
the bottom of the visualization widget or by using the mouse to navigate through the visualization. The mouse
based navigation is far more powerful and general purpose. The buttons however provide quick shortcuts to
commonly desired views. The buttons and the visualization widget are shown in the illustration in an earlier
chapter.

Navigating using the mouse. Mouse navigation is powerful but takes a little getting used to. It is relatively
simple and with experience can be used easily. This section briefly describes how one can use the mouse to
navigate through the data.

Rotating the visualization:
With 3D visualization it is important to be be able to rotate the visualized scene. In MayaVi this

is achieved by first placing the mouse pointer on top of the visualization window. Then one keeps the
left mouse button pressed and drags the mouse pointer in the direction one needs to rotate the scene.
This is very much like rotating an actual object.

Zooming in and out:
To zoom in and out of the scene first one places the mouse pointer inside the visualization window.

To zoom into the scene one keeps the the right mouse button pressed and drags the mouse upwards.
To zoom out of the scene one keeps the right mouse button pressed and drags the mouse downwards.

Panning the scene:
To pan a scene implies translating the center of the rendered scene. In MayaVi this is done in

two ways.

(1) By keeping the left mouse button pressed and simultaneously holding down the Shift key and dragging
the mouse in the appropriate direction.
(a) By keeping the middle mouse button pressed and dragging the mouse in the appropriate direction.

Just practice this a few times and you should get used to this pretty easily. This practically covers all that you
need to know to be able to use MayaVi effectively. The best way to really learn about MayaVi is to explore
the various options and try them out. Subsequent sections provide more details on the various menu’s provided
and the various modules and filters that are available.

7.3.5. Picking data. MayaVi supports data picking. While visualizing some data press the p or P key to
pick the data point above the current mouse position. This will pop up a new window where the picked values
will be displayed. The window also has a few controls that let you configure the type of picking you wish to
perform. Please note that the picker will pick data on the actors that you have visualized on screen. It will
attempt to find the nearest actor and pick the data on that. The picked point will be highlighted using an axes.
The picker supports picking the following:

Picking the nearest point:
This option is the default and lets you pick the nearest point in the data. You could use this if

you have data specified as point data. Note that when you pick using this option the picked location
may not be exactly where you placed the mouse. The location will snap to the nearest available point.
By changing the tolerance presented in the GUI you can control how near the point should be to the
exact picked position.

Picking the nearest cell:
This option lets you pick the nearest cell in the data. You could use this if you have data specified

as cell data. By changing the tolerance you can control how closely the picker finds the nearest cell.
Picking an arbitrary point:

This option lets you pick an arbitrary point in space that is not tied to the nearest cell or point.
The motion of this picker is much smoother than the point or cell picker. However, the point that
you pick will not be exactly at a point in the actual data. The results will therefore be interpolated
using a probe filter.

7.3.6. Configuring the lights. MayaVi allows you to configure the lighting of the scene using a graphical
utility. When the mouse is over the visualization frame of the window press the l or L key to open the light
configuration kit. This will pop up a new window where you can configure as many as eight different lights.
The default light is to have one light placed as a headlight. A headlight is a light that points directly ahead in
the same direction as the camera. It is possible to change the position of the default light. It is also possible to
turn on other lights, configure their elevation and azimuthal positions using the sliders provided, configure their
intensity and color. To configure a particular light click on one of the conical glyphs that indicate a particular
light. The GUI is fairly easy to follow. Experiment with it to become comfortable with it.

101



7.3. USING MAYAVI englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI

Note that if you save a visualization your light settings are also saved and when you reload the visualization
these settings are restored.

7.3.7. The Menus. This section details the various menus that MayaVi provides. Almost all the menu
items have hot keys associated with them. The underlined letter indicates the key sequence to be used. Consider
the case of the New Window menu item (the letter N is underlined) that is in the File menu (the letter F is
underlined). This can be reached by using the following key strokes. Alt-F followed by N. The Menu itself
requires the Alt modifier but the menu item does not. The following are the various menus that MayaVi
provides.

7.3.7.1. File Menu. The File menu provides the following menu items.

New Window:
This creates a new MayaVi visualization window that is completely independent of the first

window. Any number of such windows can be created.
Open:

This provides a submenu containing two items.
VTK file:

This provides a GUI dialog from which a VTK file can be selected for opening. Once the file is
opened a new DataVizManager is created and a GUI dialog for configuring the data file is provided.

VTK XML file:
This provides a GUI dialog from which a VTK XML file can be chosen. This is a new VTK
format and is only available in VTK versions higher than 4.0.

PLOT3D file:
This provides a sub menu from which either a PLOT3D file containing single block or
multi-block binary structured grid data can be selected for opening. Once the file is
opened a new DataVizManager is created and a GUI dialog for configuring the data file is
provided.

EnSight case file:
This provides a sub menu from which an EnSight case file can be opened.

Import:
This provides a submenu containing two items.

VRML2 scene:
This loads a VRML2 scene into the current visualization.

3D Studio scene:
This provides a menu containing all the VRML files that are already opened. The chosen VRML
file is closed and the VRML files actors are removed from the rendered scene.

Load:
This provides a submenu containing three items.

Visualization:
This loads a saved complete visualization.

ModuleManagers:
This creates new ModuleManagers for the current DataVizManager and loads ModuleManagers
that have been saved to a file into the newly created ones.

ModuleManagers (Append):
This is slightly different from the previous menu item and loads the first of the saved
ModuleManagers into the current ModuleManager and for the subsequent saved ModuleManagers
it creates new ModuleManagers and loads ModuleManagers from the saved file.

Save:
This provides a submenu containing four items.

Entire Visualization:
This saves the entire visualization configuration to a file such that it can be loaded by the Load

menu’s Visualization menu item.
Current DataVizManager:

This creates saves the current DataVizManager to a file. This can be loaded as a visualization.
Current ModuleManager:

This enables one to store the currently active ModuleManager into a file such that it can
be loaded later.

All ModuleManagers:
This enables one to store the all the ModuleManagers for the currently active DataVizManager
into a file such that it can be loaded later.

102



englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI 7.3. USING MAYAVI

Save Scene to:
Provides a menu which in turn provides menu items to export the visualized scene to a Post

Script file, PPM/BMP/TIFF/JPEG/PNG image, Open Inventor, Geomview OOGL, VRML and
RenderMan RIB files. It is also possible to save the scene to a vector graphic via GL2PS <http:

//www.geuz.org/gl2ps>. This is only available if VTK is built with GL2PS support.
Close:

Provides submenu’s to close the current DataVizManager. This means that all the ModuleManagers
of that particular DataVizManager will also be deleted. It also provides menus to close the currently
active VRML and 3D Studio scenes that have been imported.

Close All:
Close all the DataVizManagers and all the imported VRML2 and 3D Studio scenes.

Exit:
Close this particular MayaVi Window. If this is the only MayaVi window the application exits

completely.

7.3.7.2. Visualize Menu. The Visualize menu provides the following menu items.

Modules:
Provides a sub-menu which contains a list of all available Modules. This list is dynamically

generated based on the available modules.
Filters:

Provides a sub-menu which contains a list of all available Filters. This list is dynamically
generated based on the available filters.

Pipeline browser:
This creates a GUI that shows the entire VTK visualization pipeline. The objects in the pipeline

can be configured by double clicking on the items. If there are a large number of objects this can
become confusing to use and it would be better to use the pipeline segment browser configuration
provided with the configuration for each Module

7.3.7.3. Options Menu. The Options menu provides the following menu items.

Preferences:
Provides a GUI using which one can edit the default preferences. The preferences allow one to

set various default settings including foreground color, background color, default directory where the
file related dialogs will open in initially. These options can be saved so that the next time MayaVi is
started it will use these defaults. If you set the default directory to an empty one the directory that
the file open/save dialogs will use will be intelligently chosen. The stereo rendering option enables
stereo rendering in the MayaVi window. If the save current lighting option is set then the current
lighting is saved as the default and used in all subsequent MayaVi visualizations.

The search path setting allows the user to specify a list of directories where user defined sources,
modules and filters are made available. The search path is a ’:’-separated string and is specified like
the PYTHONPATH. ’˜’, ’˜user’ and ’$VAR’ are all expanded. Each of the directories specified in this
string can have a Sources/, a Modules/ and a Filters/ directory inside where user defined sources,
modules and filters can be stored. These modules and filters will be made available inside the User
sub-menu of the File/Open, Module and Filter menus respectively. These sources, modules and filters
can be used from the command line or from a Python interpreter session by using ’User.SourceName’
(sources cannot be specified from the command line), ’User.ModuleName’ or ’User.FilterName’. When
creating user defined sources or modules or filters make sure that the name of the module is the same
as the name of the class that defines the particular object.

Configure RenderWindow:
Provides a simple GUI to configure the Visualization RenderWindow. This is also where one can

change the stereo rendering options.
Change Foreground:

Allows one to change the default foreground color.
Change Background:

Allows one to change the default background color.
Show Debug window:

Pops up a small window where debug messages are printed. This is very useful if you run into
trouble and want to know what happened. It also shows the function call sequence. The messages
are also printed to stderr.

Show Control Panel:

103

http://www.geuz.org/gl2ps
http://www.geuz.org/gl2ps


7.3. USING MAYAVI englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI

Toggles the visibility of the control panel. This can be very useful when you want to do a full
screen visualization.

Reload Modules:
This function reloads all the currently loaded Python modules. This is very useful while debugging

a new feature for some module that one is creating. One may also see funny behavior for already
instantiated objects.

7.3.7.4. Help Menu. The Help menu provides the following menu items.

About:
Displays a few details about MayaVi.

Users Guide:
Opens a web browser and displays this MayaVi users guide.

Home page:
Opens a web browser and displays the MayaVi home page.

7.3.8. Module Documentation. The following are the list of provided Modules along with a brief de-
scription.

Axes:
This module creates and manages a set of three axes for your data. The class uses a vtkCubeAx-

esActor2D.
BandedSurfaceMap:

Displays a surface map with special contouring using the vtkBandedPolyDataContourFilter. This
contour filter produces filled contours of the same color between two contour lines rather than either
a continuous color distribution or just individual contour lines. It should work for any input dataset.
It is best used for 2d surfaces. Note that one can either specify a total number of contours between
the minimum and maximum values by entering a single integer or specify the individual contours by
specifying a Python list/tuple in the GUI.

ContourGridPlane:
This module shows a grid plane of the given input structured, rectilinear or structured points

grid with the scalar data either as a color map or as contour lines. This works only for structured
grid, structured point and rectilinear grid data. Note that one can either specify a total number
of contours between the minimum and maximum values by entering a single integer or specify the
individual contours by specifying a Python list/tuple in the GUI.

CustomGridPlane:
This module shows a grid plane of the given input grid. The plane can be shown as a wireframe

or coloured surface with or without scalar visibility and contour lines. The module basically wraps
around the vtk*GeometryFilters. This module enables one to completely configure the grid plane.
It works only for structured grid, structured point and rectilinear grid datasets. Note that one can
either specify a total number of contours between the minimum and maximum values by entering a
single integer or specify the individual contours by specifying a Python list/tuple in the GUI.

Glyph:
This module displays glyphs scaled and colored as per the input data. This will work for any

dataset and can be used for both scalar and vector data.
GridPlane:

This module shows a grid plane of the given input grid. The plane can be shown as a wireframe
or coloured surface with or without scalar visibility. This works only for structured grid, structured
point and rectilinear grid data. Useful for debugging and displaying your created grid.

HedgeHog:
This module shows the given vector data as a ’hedge hog’ plot. The lines can be colored based

on the input scalar data. This class should work with any dataset.
IsoSurface:

This module shows an iso-surface of scalar data. This will work for any dataset.
Labels:

Displays text labels of input data. When instantiated, the class can be given a module name
(the same name as listed in the Modules GUI) or an index of the module (starting from 0) in the
current module manager. If this is not provided the module will ask the user to choose a particular
module or choose filtered data. The module will then generate text lables for the data in the chosen
module and display it. The module provides many configuration options. It also lets one turn on and
off the use of a vtkSelectVisiblePoints filter. Using this filter will cause the module to only display
visible points. Note that if the module that is being labeled has changed significantly or is deleted

104



englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI 7.3. USING MAYAVI

this Labels module will have to be updated by changing one of the settings (like the RandomModeOn
check button) to a different value and then back to the original one. Alternatively, choose the module
to be labeled again.

Locator:
This module creates a ’Locator’ axis, that can be used to mark a three dimensional point in your

data.
Outline:

Displays an Outline for any data input.
PolyData:

Displays any input polydata, nothing fancy.
ScalarCutPlane:

This module plots scalar data on a cut plane either as a color map or with contour lines. This
will work for any dataset. Note that one can either specify a total number of contours between the
minimum and maximum values by entering a single integer or specify the individual contours by
specifying a Python list/tuple in the GUI.

Streamlines:
This module makes it possible to view streamlines, streamtubes, and stream ribbons for any type

of vector data. Any number of point sources can be added and deleted. A fairly powerful UI is
provided. This module should work with any dataset.

StructuredGridOutline:
Displays an Outline for a structured grid.

SurfaceMap:
Displays a surface map of any data. It should work for any dataset but is best if used for

2d surfaces (polydata and unstructured surfaces). Note that one can either specify a total number
of contours between the minimum and maximum values by entering a single integer or specify the
individual contours by specifying a Python list/tuple in the GUI.

TensorGlyphs:
This module displays glyphs, scaled and colored as per the tensor data. This will work for any

dataset.
Text:

Displays simple text on the screen. The text properties and position are configurable. The text
can also be multi-line if newlines are embedded in it.

VectorCutPlane:
This module displays cone glyphs scaled and colored as per the vector or scalar data on cut plane.

This will work for any dataset.
VelocityVector:

This module displays cone or arrow glyphs scaled and colored as per the vector data. This will
work for any dataset.

Volume:
This Volume module allows one to view a structured points dataset with either unsigned char

or short data as a volume. The module also provides a powerful GUI to edit the Color Transfer
Function (CTF). You can drag the mouse with different buttons to change the colors. The following
are the mouse buttons and key combinations that can be used to edit the CTF – red curve: Button-
1, green curve: Button-2/Control-Button-1, blue curve: Button-3/Control-Button-2, alpha/opacity:
Shift-Button-1. It is possible to use either the vtkVolumeRayCastMapper or the vtkVolumeTex-
tureMapper2D. It is also possible to choose among various ray cast functions.

WarpVectorCutPlane:
This module takes a cut plane and warps it using a vtkWarpVector as per the vector times a scale

factor. This will work for any dataset.

7.3.9. Filter Documentation. The following are the list of provided Filters along with a brief description.

CellToPointData:
This class produces PointData given an input that contains CellData. This is useful because

many of VTK’s algorithms work best with PointData. The filter basically wraps the vtkCellDataTo-
PointData class.

CutPlane:
This filter takes a cut plane of any given input data set. It interpolates the attributes onto a

plane. The position and orientation of the plane are configurable using a GUI.

105



7.3. USING MAYAVI englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI

Delaunay2D:
This filter wraps around the vtkDelaunay2D filter and lets you do 2D triangulation of a collection

of points. The key parameters are Tolerance and the Alpha value. Tolerance gives the criteria for
joining neighbouring data points and alpha is the threshold for the circumference of a caluculated
triangulated polygon.

Delaunay3D:
This filter wraps around the vtkDelaunay3D filter and lets you do 3D triangulation of a collection

of points. The key parameters are Tolerance and the Alpha value. Tolerance gives the criteria for
joining neighbouring data points and alpha is the threshold for the circumference of a caluculated
triangulated polygon.

ExtractGrid:
Wraps vtkExtractGrid (structured grid), vtkExtractVOI (imagedata/structured points) and vtkEx-

tractRectilinearGrid (rectilinear grids). These filters enable one to select a portion of, or subsample
an input dataset. Depending on the input data the appropriate filter is used.

ExtractTensorComponents:
This wraps the vtkExtractTensorComponents filter and allows one to select any of the nine

components or the effective stress or the determinant from an input tensor data set. This will work
for any dataset.

ExtractUnstructuredGrid:
This wraps the vtkExtractUnstructuredGrid filter. From the VTK docs: vtkExtractUnstruc-

turedGrid is a general-purpose filter to extract geometry (and associated data) from an unstructured
grid dataset. The extraction process is controlled by specifying a range of point ids, cell ids, or a
bounding box (referred to as ’Extent’). Those cells lying within these regions are sent to the output.
The user has the choice of merging coincident points (Merging is on) or using the original point set
(Merging is off).

ExtractVectorComponents:
This wraps the vtkExtractVectorComponents filter and allows one to select any of the three

components of an input vector data attribute.
ExtractVectorNorm:

This wraps the vtkVectorNorm filter and produces an output scalar data with the magnitude of
the vector.

MaskPoints:
This wraps the vtkMaskPoints filter. The problem with this filter is that its output is Polygonal

data. This means that if you add this filter to a ModuleManager with visualizations apart from
HedgeHog or other velocity vector data you won’t see anything! If that happens create another
ModuleManager and show the other visualizations there. Also, this means that this filter should be
typically inserted at the end of the list of filters.

PolyDataNormals:
This wraps the vtkPolyDataNormals filter. vtkPolyDataNormals is a filter that computes point

normals for a polygonal mesh. This filter tries its best to massage the input data to a suitable form.
Its output is a vtkPolyData object. Computing the normals is very useful when one wants a smoother
looking surface.

StructuredPointsProbe:
A useful filter that can be used to probe any dataset using a Structured Points dataset. The filter

also allows one to convert the scalar data to an unsigned short array so that the scalars can be used
for volume visualization.

Threshold:
This wraps the vtkThreshold filter. The problem with this filter is that its output is an Unstruc-

tured Grid. This means that if you add this filter to a ModuleManager of a gridded dataset and you
have a few grid planes, then your grid planes won’t show anymore. If that happens create another
ModuleManager and show the grid planes there acting on unfiltered data.

UserDefined:
This filter wraps around a user specified filter and lets one experiment with VTK filters that are

not yet part of MayaVi. By default if the class is instantiated it will ask the user for the VTK class
to wrap around. If passed a valid VTK class name it will try to use that particular class.

WarpScalar:
This wraps the vtkWarpScalar filter. vtkWarpScalar is a filter that modifies point coordinates by

moving points along point normals by the scalar amount times the scale factor. Useful for creating
carpet or x-y-z plots.

106



englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI7.4. USING MAYAVI FROM PYTHON

WarpVector:
Warps the geometry using the vtkWarpVector filter. vtkWarpVector is a filter that modifies point

coordinates by moving points along vector times the scale factor. Useful for showing flow profiles or
mechanical deformation.

7.4. Using MayaVi from Python

If you have installed MayaVi from the sources and are not using a binary release, then you can use MayaVi
as a Python module. This chapter details how you can use MayaVi as a Python module. If you are looking
for a powerful, interactive, cross-platform Python interpreter you might be interested in IPython. <http:

//ipython.scipy.org>

7.4.1. An example. Its very easy using MayaVi as a Python module. Thanks to Tkinter, it is also
possible to use MayaVi from the Python interpreter. This means that one can script MayaVi! This is a pretty
powerful and useful feature. To illustrate using MayaVi as a module and its scriptability, we will consider a
few simple examples where the user generates some data and a VTK file and then uses MayaVi to visualize the
data.

7.4.1.1. Generating some data.

>>> # generate the data.

>>> from Numeric import *

>>> import scipy

>>> x = (arange(50.0)-25)/2.0

>>> y = (arange(50.0)-25)/2.0

>>> r = sqrt(x[:,NewAxis]**2+y**2)

>>> z = 5.0*scipy.special.j0(r) # Bessel function of order 0

>>> # now dump the data to a VTK file.

>>> import pyvtk

>>> # Flatten the 2D array data as per VTK’s requirements.

>>> z1 = reshape(transpose(z), (-1,))

>>> point_data = pyvtk.PointData(pyvtk.Scalars(z1))

>>> grid = pyvtk.StructuredPoints((50,50, 1), (-12.5, -12.5, 0), (0.5, 0.5, 1))

>>> data = pyvtk.VtkData(grid, point_data)

>>> data.tofile(’/tmp/test.vtk’)

The above example uses the Numeric <http://numpy.sourceforge.net>, SciPy <http://www.scipy.

org> and pyVtk <http://cens.ioc.ee/projects/pyvtk/> modules. Please note the step where z1 is obtained
from z. This step is done to correctly flatten the two dimensional array z. The problem with Numeric arrays
and VTK data is that you have to be careful of the order of the data points. The way VTK reads data (for all
the data formats that have a structure) is something like this:

>>> for k in range(n_z):

>>> for j in range(n_y):

>>> for i in range(n_x):

>>> read_line()

This means that the x values must be iterated over first, the y values next and the z values last. If you
simply flatten the 2D numeric array then this will not happen properly. By using reshape(transpose(z),

(-1,)) we ensure that the data points are specified in the correct order. The next step is to visualize the
generated data.

7.4.1.2. Visualize the generated data.

>>> import mayavi

>>> v = mayavi.mayavi() # create a MayaVi window.

>>> d = v.open_vtk(’/tmp/test.vtk’, config=0) # open the data file.

>>> # The config option turns on/off showing a GUI control for the data/filter/module.

>>> # load the filters.

>>> f = v.load_filter(’WarpScalar’, config=0)

>>> n = v.load_filter(’PolyDataNormals’, 0)

>>> n.fil.SetFeatureAngle (45) # configure the normals.

107

http://ipython.scipy.org
http://ipython.scipy.org
http://numpy.sourceforge.net
http://www.scipy.org
http://www.scipy.org
http://cens.ioc.ee/projects/pyvtk/


7.4. USING MAYAVI FROM PYTHONenglishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI

Figure 7.4.1. Surface plot

>>> # Load the necessary modules.

>>> m = v.load_module(’SurfaceMap’, 0)

>>> a = v.load_module(’Axes’, 0)

>>> a.axes.SetCornerOffset(0.0) # configure the axes module.

>>> o = v.load_module(’Outline’, 0)

>>> v.Render() # Re-render the scene.

The result of this is seen in the above figure. It is important to note that the Python interpreter will
continue to remain interactive when MayaVi is running. In fact, it is possible to create an animation from the
interpreter as done in the following.

>>> # now do some animation.

>>> import time

>>> for i in range (0, 10):

... f.fil.SetScaleFactor(i*0.1)

... v.Render()

... v.renwin.save_png(’/tmp/anim...’)

... time.sleep(1)

>>>

108



englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI7.4. USING MAYAVI FROM PYTHON

The above example saves the screen each iteration to a PNG image. One will need VTK 4.0 for PNG
support. These images can be later used by some other utility to create a movie. It is therefore possible to
create very useful visualizations from within the Python interpreter.

7.4.1.3. Using VTK data objects. There are times when the user has created a VTK data object that needs
to be visualized. MayaVi has a special data handler for such cases. The following shows how this can be used.
The example itself uses a VTK file but the data could have also been generated using other means.

>>> # import VTK

>>> import vtkpython

>>> # create some data.

>>> reader = vtkpython.vtkStructuredPointsReader()

>>> reader.SetFileName(’/tmp/test.vtk’)

>>> reader.Update()

>>> data = reader.GetOutput() # this is a vtkStructuredPoints object.

>>> import mayavi

>>> v = mayavi.mayavi() # create a MayaVi window

>>> v.open_vtk_data(data) # load the data from the vtkStructuredPoints object.

>>> f = v.load_filter(’WarpScalar’, 0)

>>> # Load other filters and modules...

The above example uses a vtkStructuredPoints as the input. Other types can also be used as the input.
The other valid types are: vtkRectilinearGrid, vtkStructuredGrid, vtkUnstructuredGrid and vtkPolyData.
Any of these objects can be used as an input and then visualized using MayaVi.

Right now the best way to find out what functions are available etc. would be to read the sources or use
pydoc to browse through the code. Experimenting with MayaVi from the interpreter is also a good idea and
will be highly educative.

7.4.1.4. Standalone MayaVi scripts. After interactively exploring MayaVi from the interpreter one usually
would like to run these in a non-interactive fashion. That is you’d like to create a Python script that invokes
MayaVi. The easiest way to do it is as shown in the following simple example

import mayavi

v = mayavi.mayavi()

v.load_visualization(’heart.mv’)

# Do whatever you please with the MayaVi window.

# To make the MayaVi window interact with the user and wait

# till it is closed to proceed, do the following:

v.master.wait_window()

# Now once the previous window is closed if you need

# to open another do this:

v = mayavi.mayavi()

d = v.open_vtk(’file.vtk’)

# etc.

v.master.wait_window()

# Once the MayaVi window is closed the program will exit.

As can be seen above, it is easy to use code from an interactive session in a standalone Python script. It is
also possible to script MayaVi in the following manner.

import Tkinter

r = Tkinter.Tk()

r.withdraw()

import mayavi

v = mayavi.Main.MayaViTkGUI(r)

v.load_visualization(’heart.mv’)

# Do whatever you please with the MayaVi window.

# now do this to start the Tk event loop.

109



7.4. USING MAYAVI FROM PYTHONenglishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI

root.mainloop()

# Once the MayaVi window is closed the program will exit.

This is an alternative way to do use MayaVi from Python scripts. This might be helpful if you have used
Tkinter and know how to use it. However, the first approach is a lot easier.

7.4.2. Useful Python Modules. This section describes some other useful modules that are released
as part of MayaVi but are not necessarily part of the core MayaVi module/application. The module ivtk is
described in the next section. The MayaVi package also contains a sub-package called tools. This directory
contains miscellaneous but useful tools that use or are related to MayaVi. This is described subsequently.

7.4.3. The Interactive VTK module. It is very nice to be able to use and experiment with VTK
from the Python interpreter. In order to make this easier I’ve written a simple module that uses some of the
MayaVi classes. This makes using VTK from Python very pleasant. The module is called ivtk which stands
for interactive VTK. ivtk provides the following features.

• An easy to use VTK actor viewer that has menus to save the scene, change background, show a help
browser, show a pipeline browser etc.

• A simple class documentation search tool/browser that lets you search for arbitrary strings in the
VTK class documentation and lets you browse the VTK class documentation.

• An easy to use GUI to configure VTK objects using the vtkPipeline.ConfigVtkObj module.
• An integrated picker that can be activated by pressing the p or P keys. This picker functions the

same way as the MayaVi picker.
• An integrated light configuration kit that can be activated by pressing the l or L keys. This light

configuration functions the same way as the MayaVi light kit.

The help browser allows one to search for arbitrary strings in the VTK class documentation. ’and’ and ’or’
keywords are supported and this makes searching for specific things easier. If a search is successful a list of
matching classes is returned. Clicking on a class will pop up a window with the particular class documentation.
It is also possible to search for a particular class name. All classes matching the searched name will be shown.
The searching is case insensitive.

Here is a sample session that illustrates how ivtk can be used. A simple cone example is shown.

>>> from mayavi import ivtk

>>> from vtkpython import *

>>> c = vtkConeSource()

>>> m = vtkPolyDataMapper()

>>> m.SetInput(c.GetOutput())

>>> a = vtkActor()

>>> a.SetMapper(m)

>>> v = ivtk.create_viewer() # or ivtk.viewer()

# this creates the easy to use render window that can be used from

# the interpreter. It has several useful menus.

>>> v.AddActors(a) # add actor(s) to viewer

>>> v.config(c) # pops up a GUI configuration for object.

>>> v.doc(c) # pops up class documentation for object.

>>> v.help_browser() # pops up a help browser where you can search!

>>> v.RemoveActors(a) # remove actor(s) from viewer.

The AddActors/RemoveActors method can be passed a list/tuple or a single actor. All of the passed actors
will be added/removed to the vtkRenderWindow. The config method provides an easy to use GUI to configure
the passed VTK object. The viewer also provides menus to save the rendered scene and also provides a menu
to open a VTK Pipeline browser that can be used to browse the VTK pipeline and configure objects in it.

Even without creating the actor viewer it is possible to use the help browser and the configure code as
shown below.

>>> from mayavi import ivtk

>>> d = ivtk.doc_browser()

# pops up a standalone searcheable VTK class help browser.

110



englishCHAPTER 7. 3D VISUALIZATION WITH MAYAVI 7.5. SCRIPTED EXAMPLES

>>> from vtkpython import *

>>> c = vtkConeSource()

>>> ivtk.doc(c) # pops up class documentation for c

>>> ivtk.doc(’vtkObject’) # class documentation for vtkObject.

>>> ivtk.config(c) # configure object with GUI.

The module is fairly well documented and one should look at the module for more information. However,
the above information should suffice if one wants to start using the module.

7.4.3.1. The MayaVi tools sub-package. MayaVi has a tools sub-package that contains useful modules
that use or are related to MayaVi. The following modules are present currently.

The imv package. The imv module provides Matlab-like one liners that make it easy to visualize data from
the Python interpreter. It currently provides three useful functions. These are partially described below. A
simple example is also provided below that. The imv module is well documented so please read the documentation
strings in the module for more details.

surf(x, y, f): This samples the function or 2D array f along x and y and plots a 3D surface.

view(arr): Views 2D arrays as a structured points dataset. The view is set to the way we usually think
of matrices with (0,0) at the top left of the screen.

viewi(arr): Views 2D arrays as a structured points dataset. The data is viewed as an image. This
function is meant to be used with large arrays. For smaller arrays one should use the more powerful
view() function. The implementation of this function is a bit of a hack and many of MayaVi’s features
cannot be used. For instance you cannot change the lookup table color and expect the color of the
image to change.

sampler(xa, ya, func): Samples a function (func) at an array of ordered points (with equal spacing)
and returns an array of scalars as per VTK’s requirements for a structured points data set, i.e. x
varying fastest and y varying next.

Here is a simple example of what can be done with the imv module.

> > > from Numeric import *

> > > from mayavi.tools import imv

> > > # surf example.

> > > def f(x, y):

... return sin(x*y)/(x*y)

> > > x = arange(-5., 5.05, 0.05)

> > > y = arange(-5., 5.05, 0.05)

> > > v = imv.surf(x, y, f)

> > > # view/viewi example.

> > > z1 = fromfunction(lambda i,j:i+j, (128,256))

> > > v1 = imv.view(z1)

> > > z2 = fromfunction(lambda i,j:i+j, (512, 512))

> > > v2 = imv.viewi(z2)

7.5. Scripted examples

Load John’s dataset, make a mayavi script out of his vtk one
volumetric rendering
time animation
slicing a 4d dataset

111





CHAPTER 8

3D visualization with VTK

The Visualization Toolkit is a library for creating, analyzing, and visualizing 3D data, and is a high level
library that sits on top of a low-level library like OpenGL. Because 3D interaction and visualization is so
computationally intensive, video cards come with special processors to do computations for 3D geometry at
the hardware level, and low-level software libraries like OpenGL are used to communicate with the video card.
However, low level libraries are just that, and do not support the higher level geometrical concepts that describe
the problem at hand; eg OpenGL has no concept of a cube – you can create a cube by making six rectangular
faces placed in the proper positions – but you can’t say ”draw me a cube” [43].

That is where high level libraries like VTK come in. VTK is an enormously powerful and complex visu-
alization library written in C++ that can drive low level 3D libraries such as Mesa, a pure software OpenGL
implementation, and OpenGL itself. It relies heavily on principles of object oriented design, and can be plugged
into all widely used graphical user interfaces: Cocoa, Win32, Tkinter, WX, GTK, FLTK and more. Wrappers
of the C++ code exist for Python, Java and TCL. VTK provides python users the ability to do cross-platform,
hardware accelerated rendering from the comfort of the python interpreter, all with better quality than money
can buy.

VTK is a complex library – with over 1000 classes and a deep inheritance scheme, it has an API rivaling
Java’s in complexity. The system was initially developed by Bill Schroeder and Will Lorenson, who designed
the library after working in visualization and animation for 10 years. The initial design identified only 25 core
classes, and four software professionals spent 10 months designing the library before touching a keyboard! These
original 25 classes still exist in the library today [38].

8.1. Hello world in VTK

We’ll start with a minimal example that creates and displays a cube. The example below creates a cube.
The src for this example is examples/vtk_hello.py and the output is shon in Figure 8.1.1.

Listing 8.1

#!/usr/local/bin/python

import os

import vtk

# Create a rectangular cube. VTK has a number of "source" classes to

# create cubes , cones , cylinders , spheres , grids , images and even

# mandlebrot sets!

Figure 8.0.1. Screenshots from pbrain, a python application for localizing subdural
electrodes and mapping statistical quantities from the ECoG onto their spatial coordi-
nates which utilizes VTK for visualization.

113



8.1. HELLO VTK englishCHAPTER 8. VTK

cube = vtk.vtkCubeSource ()

cube.SetXLength (10)

cube.SetYLength (5)

cube.SetZLength (20)

cube.SetCenter (1,2,3)

# Set up the mappers to extract data primitives. The output of the

# mapper is polygon data that

mapper = vtk.vtkPolyDataMapper ()

mapper.SetInput(cube.GetOutput ())

# The actors are the objects that are added to the scene. Here you

# can set properties of the actor , eg object (color , translucency ,

# etc)

actor = vtk.vtkActor ()

actor.SetMapper(mapper)

actor.GetProperty ().SetColor (1,0,0)

# Rendering is the process of converting geometry (points , edges ,

# polygon faces), lights , camera angles and so on to a 2D image view

# -- what you see on the screen. The vtkRenderer is an abstract

# interface to concrete implementations , eg vtkOpenGLRenderer for

# hardware accelerated rendering

ren = vtk.vtkRenderer ()

ren.AddActor(actor)

# The render window is a graphical user interface window in which the

# renderer above draws the 2D rendered image

renWin = vtk.vtkRenderWindow ()

renWin.AddRenderer(ren)

# The render window interactor is a platform independent way for

# supporting GUI interaction -- mouse presses , keyborar events , mouse

# motion and so on

iren = vtk.vtkRenderWindowInteractor ()

iren.SetRenderWindow(renWin)

renWin.SetSize (450 ,450)

# Ready , set , go!

iren.Initialize ()

iren.Start()

Exercise 8.2. Learning to fly. It takes a little while to get used to the navigation controls in VTK. Every
mouse button: left middle and right controls navigation, and there are multiple modes of interaction: camera
versus actor and joystick versus trackball. For example, in camera mode, the left mouse button rotates the
camera around its focal point, the middle mouse button pans the camera, and the right mouse button zooms.
These controls have different meanings in actor mode (toggle camera and actor mode by pressing ’c’ and toggle
joystick versus trackball mode by pressing ’j’. Visit the vtkInteractorStyle page and read more about the
ways you can interact with the data, and experiment with the differnent controls. Much like a video game, it
takes a while before you are comfortable at the controls: we call this process learning to fly.1

Exercise 8.3. Make a translucent sphere. Modify examples/vtk_hello.py to add a translucent blue sphere
to the to scene. Translucency hint : translucency is an actor property – as you see in the code above, you call
actor.GetProperty() to get the actor property reference. Visit the VTK class docs web page and click on

1http://www.vtk.org/doc/nightly/html/classvtkInteractorStyle.html

114



englishCHAPTER 8. VTK 8.4. MEDICAL IMAGES

Figure 8.1.1. A Cube, brought to you by VTK

the vtk class vtkActor and find the method GetProperty(). If you click on the return value of this method
(vtkProperty) you’ll be taken to the right page. Read over the available methods to determine the appropriate
one for setting the translucency and note all the other properties that you can control.

8.4. Working with medical image data

VTK has very strong support for medical image data, including volume data readers, DICOM readers,
surface contour filters, plane slice widgets, and so on. In addition, the Insight Toolkit (ITK), which was
developed by a consortium of universities and private companties, provides a large number state-of-the-art
image segmentation and registration algorithms[21]. Like VTK, ITK is a large, sophisticated C++ library
which comes with wrappers for a number of interpreted languages: Java, Tcl and Python. The first step in the
pipeline to work with image/volume data is to create a reader, and VTK ships with readers and writers for all
popular formats for medical image data, eg vtkDICOMImageReader, to read the ubiquitous DICOM format, and
vtkVolumeReader, to work with raw binary images. Once the image is loaded, you can pass it to various filters
or viewers. In the example below, we create an MRI viewer shown in Figure 8.4.1.

Listing 8.2

#!/usr/local/bin/python

import os

import vtk

from WindowLevelInterface import WindowLevelInterface

# Create reader - you have total flexibility to specify the file

# naming pattern , the byte order , the size of the header and so on

reader = vtk.vtkVolume16Reader ()

reader.SetDataDimensions (256 ,256)

reader.GetOutput ().SetOrigin (0.0 ,0.0 ,0.0)

reader.SetFilePrefix(’../ data/images/r’)

reader.SetFilePattern( ’%s%d.ima’)

reader.SetDataByteOrderToBigEndian ()

reader.SetImageRange (1001 ,1060)

reader.SetDataSpacing (1.0 ,1.0 ,3.5)

reader.Update ()

115



8.4. MEDICAL IMAGES englishCHAPTER 8. VTK

Figure 8.4.1. A simple slice viewer, in 30 lines of python

# VTK comes with a helper class to view slice data

viewer = vtk.vtkImageViewer ()

viewer.SetInput(reader.GetOutput ())

viewer.SetZSlice (30)

viewer.SetColorWindow (600)

viewer.SetColorLevel (270)

viewer.Render ()

viewer.SetPosition (50 ,50)

# A helper class to set the window level , etc

WindowLevelInterface(viewer)

A common need in medical image data analysis and visualization is segmentation of different anatomical
regions. VTK provides support for this with isosurface contouring via the patented marching cubes algorithm.
Although marching cubes is patented, it is free for noncommerical use, though it is unclear whether use in
an academic research setting qualifies as noncommercial.2 However the patent is due to expire in the summer
of 2005, so this issue will soon be moot. The marching cube algorithm takes a seed value which is an image
intensity value, and generates one or more 2D level surfaces from the 3D volume data. For more sophisticated
image segmentation routines, see the Insight Segmentation and Registration Toolkit, referenced above. In the
example code below, we will read the image data set as we did in the slice viewer application above, and feed
this data to the marching cubes algorithm. The output will be stored in a VTK data file, in this case a plain
text file which stores vertex, edge and polygon information, and shown in Figure 8.4.2. These files can be read
and the data in them manipulated, analyzed and visualized by external tools, eg MayaVi.

Listing 8.3

#!/usr/local/bin/python

import os

import vtk

import colors

# Create the volume reader

reader = vtk.vtkVolume16Reader ()

reader.SetDataDimensions (256 ,256)

reader.GetOutput ().SetOrigin (0.0 ,0.0 ,0.0)

reader.SetFilePrefix(’../ data/images/r’)

reader.SetFilePattern( ’%s%d.ima’)

reader.SetDataByteOrderToBigEndian ()

reader.SetImageRange (1001 ,1060)

2http://www.imakenews.com/bakerbotts/e article000166656.cfm

116



englishCHAPTER 8. VTK 8.4. MEDICAL IMAGES

reader.SetDataSpacing (1.0 ,1.0 ,3.5)

reader.Update ()

# Marching cubes generates iso -surfaces

iso = vtk.vtkMarchingCubes ()

iso.SetInput(reader.GetOutput ())

# We’ll run it though the decimation filter to make it a little

# smaller.

decimate = vtk.vtkDecimate ()

decimate.SetInput(iso.GetOutput ())

# Some iso values

# vessles : 120

# cortex : 100

# face : 20

iso.SetValue (0 ,100)

isoMapper = vtk.vtkPolyDataMapper ()

isoMapper.SetInput(decimate.GetOutput ())

# You can assign scalars to voxels , eg to map things onto the cortex

# Here we are just dislpaying the anatomy so we turn scalars off

isoMapper.ScalarVisibilityOff ()

isoActor = vtk.vtkActor ()

isoActor.SetMapper(isoMapper)

# this is the color of the surface

isoActor.GetProperty ().SetColor(colors.antique_white)

# Let’s save the data to a VTK file for external processing. The

# Update command is used to make sure the pipeline is up-to-date

# before writing

decimate.Update ()

writer = vtk.vtkDataSetWriter ()

writer.SetInput(decimate.GetOutput ())

writer.SetFileName(’../ data/bighead.vtk’)

writer.SetFileTypeToASCII ()

writer.Write()

# Now visualize it; set up the renderer and add the actor

ren = vtk.vtkRenderer ()

ren.AddActor(isoActor)

ren.SetBackground (0.2 ,0.3 ,0.4)

# Set up the render window and interactor

renWin = vtk.vtkRenderWindow ()

renWin.AddRenderer(ren)

iren = vtk.vtkRenderWindowInteractor ()

iren.SetRenderWindow(renWin)

renWin.SetSize (450 ,450)

# Ready , set , go!

117



8.4. MEDICAL IMAGES englishCHAPTER 8. VTK

Figure 8.4.2. The cortical isosurface generated by a simple intensity based marching
cubes application (40 lines of python listed above). More sophisticated image segmen-
tation is available in the Insight Toolkit.

iren.Initialize ()

iren.Start()

The possibilities for visualizing and analyzing 2D and 3D data with VTK and ITK are almost endless, and
a person could spend many years mastering these libraries. Fortunately, there are many examples and several
fine textbooks to speed you on your way. This introduction has only scratched the surface, using just a few of
the 1000 or so classes available. Because the library is so large and daunting, and because the typical scientist
doesn’t have several years to master it, it is fortunate that MayaVi, a python application written by Prabhu
Ramachandran, wraps this complexity into an easy to use graphical user interface. MayaVi is under active
development, and will be a plugin component of the enthought envisage application framework for scientific
computing in python.

118



CHAPTER 9

Interfacing with external libraries

9.1. weave

Below is a listing of examples of weave use. This needs a lot of cleaning, as some of this code is very old
and doesn’t actually run with current weave.

#!/usr/bin/env python

"""Simple examples of weave use.

Code meant to be used for learning/testing , not production.

Fernando Perez <fperez@colorado.edu >

March 2002, updated 2003."""

from weave import inline ,converters

from Numeric import *

#-----------------------------------------------------------------------------

def simple_print(input):

"""Simple print test.

Since there’s a hard -coded printf %i in here , it will only work for

...numerical

inputs (ints). """

# note in the printf that newlines must be passed as \\n:

code = ’’’

std::cout << "Printing from C++ (using std::cout) : "<<input <<std::endl;

printf ("And using C syntax (printf) : %i\\n",input);

’’’

inline(code ,[’input’],

verbose =2) # see inline docstring for details

def py_print(input):

"Trivial printer , for timing."

print "Input:",input

def c_print(input):

"Trivial printer , for timing."

code = """printf("Input: %i \\n",input);"""

inline(code ,[’input’])

def cpp_print(input):

"Trivial printer , for timing."

code = """std::cout << "Input: " << input << std::endl;"""

inline(code ,[’input’])

119



9.1. WEAVE englishCHAPTER 9. EXTERNAL LIBRARIES

#-----------------------------------------------------------------------------

# Returning a scalar quantity computed from a Numeric array.

def trace(mat):

"""Return the trace of a matrix.

"""

nrow ,ncol = mat.shape

code = \

"""

double tr=0.0;

for(int i=0;i<nrow ;++i)

tr += mat(i,i);

return_val = tr;

"""

return inline(code ,[’mat’,’nrow’,’ncol’],

type_converters = converters.blitz)

#-----------------------------------------------------------------------------

# WRONG CODE: trace() version which modifies in-place a python scalar

# variable. Note that this doesn’t work , similarly to how in-place changes in

# python only work for mutable objects. Below is an example that does work.

def trace2(mat):

"""Return the trace of a matrix. WRONG CODE.

"""

nrow ,ncol = mat.shape

tr = 0.0

code = \

"""

for(int i=0;i<nrow ;++i)

tr += mat(i,i);

"""

inline(code ,[’mat’,’nrow’,’ncol’,’tr’],

type_converters = converters.blitz)

return tr

#-----------------------------------------------------------------------------

# Operating in-place in an existing Numeric array. Contrary to trying to modify

# in-place a scalar , this works correctly.

def in_place_mult(num ,mat):

"""In-place multiplication of a matrix by a scalar.

"""

nrow ,ncol = mat.shape

code = \

"""

for(int i=0;i<nrow ;++i)

for(int j=0;j<ncol ;++j)

mat(i,j) *= num;

"""

inline(code ,[’num’,’mat’,’nrow’,’ncol’],

type_converters = converters.blitz)

#-----------------------------------------------------------------------------

# Pure Python version for checking.

120



englishCHAPTER 9. EXTERNAL LIBRARIES 9.1. WEAVE

def cross_product(a,b):

"""Cross product of two 3-d vectors.

"""

cross = [0]*3

cross [0] = a[1]*b[2]-a[2]*b[1]

cross [1] = a[2]*b[0]-a[0]*b[2]

cross [2] = a[0]*b[1]-a[1]*b[0]

return array(cross)

#-----------------------------------------------------------------------------

# Here we return a list from the C code. This is probably *much* slower than

# the python version , it’s meant as an illustration and not as production

# code.

def cross_productC(a,b):

"""Cross product of two 3-d vectors.

"""

# py::tuple or py::list both work equally well in this case.

code = \

"""

py::tuple cross (3);

cross [0] = a(1)*b(2)-a(2)*b(1);

cross [1] = a(2)*b(0)-a(0)*b(2);

cross [2] = a(0)*b(1)-a(1)*b(0);

return_val = cross;

"""

return array(inline(code ,[’a’,’b’],

type_converters = converters.blitz))

#-----------------------------------------------------------------------------

# C version which accesses a pre -allocated NumPy vector. Note: when using

# blitz , index access is done with (,,), not [][][]. In fact , [] indexing

# fails silently. See this and the next version for a comparison.

def cross_productC2(a,b):

"""Cross product of two 3-d vectors.

"""

cross = zeros(3,a.typecode ())

code = \

"""

cross (0) = a(1)*b(2)-a(2)*b(1);

cross (1) = a(2)*b(0)-a(0)*b(2);

cross (2) = a(0)*b(1)-a(1)*b(0);

"""

inline(code ,[’a’,’b’,’cross’],

type_converters = converters.blitz)

return cross

#-----------------------------------------------------------------------------

# Just like the previous case , but now we don’t use the blitz converters.

# Weave automagically does the type conversions for us.

def cross_productC3(a,b):

"""Cross product of two 3-d vectors.

"""

121



9.1. WEAVE englishCHAPTER 9. EXTERNAL LIBRARIES

cross = zeros(3,a.typecode ())

code = \

"""

cross [0] = a[1]*b[2]-a[2]*b[1];

cross [1] = a[2]*b[0]-a[0]*b[2];

cross [2] = a[0]*b[1]-a[1]*b[0];

"""

inline(code ,[’a’,’b’,’cross’])

return cross

#-----------------------------------------------------------------------------

def dot_product(a,b):

"""Dot product of two vectors.

Implemented in a funny (ridiculous) way to use support_code.

I want to see if we can call another function from inside our own

code. This would give us a crude way to implement better modularity by

having global constants which include the raw code for whatever C

functions we need to call in various places. These can then be included

via support_code.

The overhead is that the support code gets compiled in *every* dynamically

generated module , but I’m not sure that’s a big deal since the big

compilation overhead seems to come from all the fancy C++ templating and

whatnot.

Later: ask Eric if there’s a cleaner way to do this."""

N = len(a)

support = \

"""

double mult(double x,double y) {

return x*y;

}

"""

code = \

"""

double sum = 0.0;

for (int i=0;i<N;++i) {

sum += mult(a(i),b(i));

}

return_val = sum;

"""

return inline(code ,[’a’,’b’,’N’],

type_converters = converters.blitz ,

support_code = support ,

libraries = [’m’],

)

#-----------------------------------------------------------------------------

def sumC(x):

122



englishCHAPTER 9. EXTERNAL LIBRARIES 9.1. WEAVE

"""Return the sum of the elements of a 1-d array.

An example of how weave accesses a Numeric array without blitz. """

num_types = {Float:’double ’,

Float32:’float’}

x_type = num_types[x.typecode ()]

code = """

double result =0.0;

double element;

for (int i = 0; i < Nx[0]; i++){

// Note the type of the pointer below is computed in python

// element = *(%s *)(x->data+i*x->strides [0]);

// Weave’s magic does the above for us:

element = x[i];

result += element;

std::cout << "Element " << i << " = " << element << "\\n";

}

std::cout << "size x " << Nx[0] << "\\n";

return_val = result;

""" % x_type;

return inline(code ,[’x’],verbose =0)

#-----------------------------------------------------------------------------

def Cglobals(arr):

"""How to pass data from function to function via globals.

This allows the kind of ’over the head’ parameter passing via globals

which is ugly but necessary for using things like generic integrators in

Numerical Recipes with aditional parameters. """

support = \

"""

// Declare globals here

/* These blitz guys must be accessed via pointers to avoid a costly copy.

Note that now the type is hardwired in. All python polymorphism is gone. I

should look into whether this can be fixed by properly using blitz templating.

*/

blitz::Array <int , 1> *G_arr_pt;

// The global M will be visible in the "code" segment

int M = 99;

void aprint(int N) {

std::cout << "In aprint ()\\n";

for (int i=0;i<N;++i)

123



9.1. WEAVE englishCHAPTER 9. EXTERNAL LIBRARIES

std::cout << "arr[" << i << "]=" << (* G_arr_pt)(i) << " ";

std::cout << std::endl;

}

"""

code = \

"""

// Get the passed array reference so the data becomes global

G_arr_pt = &arr;

std::cout << "global M=" << M << std::endl;

std::cout << "local N=" << N << std::endl;

std::cout << "First , print using the blitz internal printer :\\n";

std::cout << "all arr\\n";

std::cout << arr << std::endl;

std::cout << "all G_arr\\n";

std::cout << *G_arr_pt << std::endl;

std::cout << "now by loop\\n";

for (int i=0;i<N;++i)

std::cout << "arr[" << i << "]=" << arr(i) << " ";

std::cout << std::endl;

std::cout << "Now calling aprint \\n";

aprint(N);

"""

N = len(arr)

return inline(code ,[’arr’,’N’],

type_converters = converters.blitz ,

support_code = support ,

libraries = [’m’],

verbose = 0,

)

#-----------------------------------------------------------------------------

# Two trivial examples using the C math library follow.

def powC(x,n):

"""powC(x,n) -> x**n. Implemented using the C pow() function.

"""

support = \

"""

#include <math.h>

"""

code = \

"""

return_val = pow(x,n);

"""

124



englishCHAPTER 9. EXTERNAL LIBRARIES 9.1. WEAVE

return inline(code ,[’x’,’n’],

type_converters = converters.blitz ,

support_code = support ,

libraries = [’m’],

)

# Some callback examples

def foo(x,y):

print "In Python ’s foo:"

print ’x’,x

print ’y’,y

return x

def cfoo(x,y):

code = """

printf("Attemtping to call back foo() from C...\\n");

py::tuple foo_args (2);

py:: object z; // This will hold the return value of foo()

foo_args [0] = x;

foo_args [1] = y;

z = foo.call(foo_args);

printf("Exiting C code .\\n");

return_val = z;

"""

return inline(code ,"foo x y".split() )

x=99

y="Hello"

print "Pure python ..."

z=foo(x,y)

print "foo returned:",z

print "\nVia weave ..."

z=cfoo(x,y)

print "cfoo returned:",z

# Complex numbers

def complex_test ():

a = zeros ((4,4),Complex)

a[0,0] = 1+2j

a[1,1] = 2+3.5j

print ’Before\n’,a

code = \

"""

std::complex <double > i(0, 1);

std::cout << a(1,1) << std::endl;

a(2,2) = 3.0+4.5*i;

//a(2,2).imag = 4.5;

"""

inline(code ,[’a’],type_converters = converters.blitz)

print ’After\n’,a

complex_test ()

125



9.1. WEAVE englishCHAPTER 9. EXTERNAL LIBRARIES

#-----------------------------------------------------------------------------

def sinC(x):

"""sinC(x) -> sin(x). Implemented using the C sin() function.

"""

support = \

"""

#include <math.h>

"""

code = \

"""

return_val = sin(x);

"""

return inline(code ,[’x’],

type_converters = converters.blitz ,

support_code = support ,

libraries = [’m’],

)

def in_place_multNum(num ,mat):

mat *= num

from weave import inline

class bunch: pass

def oaccess ():

x=bunch()

x.a = 1

code = """ // BROKEN!

// Try to emulate Python ’s: print ’x.a’,x.a

std::cout << "x.a " << x.a << std::endl;

"""

inline(code ,[’x’])

main2 = oaccess

def ttest():

nrun = 10

size = 6000

mat = ones((size ,size),’d’)

num = 5.6

tNum = time_test(nrun ,in_place_multNum ,*(num ,mat))

print ’time Num’,tNum

tC = time_test(nrun ,in_place_mult ,*(num ,mat))

print ’time C’,tC

def main():

print ’Printing comparisons:’

print ’\nPassing an int - what the C was coded for:’

simple_print (42)

126



englishCHAPTER 9. EXTERNAL LIBRARIES 9.1. WEAVE

print ’\nNow passing a float. C++ is fine (cout << takes care of things) but

... C fails:’

simple_print (42.1)

print ’\nAnd a string. Again , C++ is ok and C fails:’

simple_print(’Hello World!’)

A = zeros ((3,3),’d’)

A[0,0],A[1,1],A[2,2] = 1,2.5,3.3

print ’\nMatrix A:\n’,A

print ’Trace by two methods. Second fails , see code for details.’

print ’\ntr(A)=’,trace(A)

print ’\ntr(A)=’,trace2(A)

a = 5.6

print ’\nMultiplying A in place by %s:’ % a

in_place_mult(a,A)

print A

# now some simple operations with 3-vectors.

a = array ([4.3 ,1.5 ,5.6])

b = array ([0.8 ,2.9 ,3.8])

print ’\nPython and C versions follow. Results should be identical:’

print ’a =’,a

print ’b =’,b

print ’\nsum(a_i) =’,sum(a)

print ’sum(a_i) =’,sumC(a)

print ’\na.b =’,dot(a,b)

print ’a.b =’,dot_product(a,b)

print ’\na x b =’,cross_product(a,b)

print ’a x b =’,cross_productC(a,b)

print ’\nIn -place versions.’

print ’a x b =’,cross_productC2(a,b)

print ’a x b =’,cross_productC3(a,b)

print ’\nSimple functions using the C math library:’

import math

x = 3.5

n = 4

theta = math.pi/4.

print ’\nx**’+str(n)+’=’,x**n

print ’x**’+str(n)+’=’,powC(x,n)

print ’\nsin(’+str(theta)+’)=’,math.sin(theta)

print ’sin(’+str(theta)+’)=’,sinC(theta)

print ’\nGlobal variables and explicitly typed blitz arrays.’

x = array ([4,5,6])

print ’x is a Numeric array:\nx=’,x

127



9.3. F2PY englishCHAPTER 9. EXTERNAL LIBRARIES

print ’Now using weave:’

Cglobals (x)

if __name__ == ’__main__ ’:

main()

9.2. swig

9.3. f2py

This is a rough set of notes on how to use f2py. It does NOT substitute the official manual, but is rather
meant to be used alongside with it.

For any non-trivial poject involving f2py, one should also keep at hand Pierre Schnizer’s excellent ’A short
introduction to F2PY’, available from http://fubphpc.tu-graz.ac.at/˜pierre/f2py tutorial.tar.gz

9.3.1. Usage for the impatient. Start by building a scratch signature file automatically from your
Fortran sources (in this case all, you can choose only those .f files you need):

f2py -m MODULENAME -h MODULENAME.pyf *.f

This writes the file MODULENAME.pyf, making the best guesses it can from the Fortran sources. It builds an
interface for the module to be accessed as ’import adap1d’ from python.

You will then edit the .pyf file to fine-tune the python interface exhibited by the resulting extension. This
means for example making unnecessary scratch areas or array dimensions hidden, or making certain parameters
be optional and take a default value.

Then, write your setup.py file using distutils, and list the .pyf file along with the Fortran sources it is meant
to wrap. f2py will build the module for you automatically, respecting all the interface specifications you made
in the .pyf file.

This approach is ultimately far easier than trying to get all the declarations (especially dependencies) right
through Cf2py directives in the Fortran sources. While that may seem appealing at first, experience seems to
show that it’s ultimately far more time-consuming and prone to subtle errors. Using this approach, the first
f2py pass can do the bulk of the interface writing and only fine-tuning needs to be done manually. I would only
recommend embedded Cf2py directives for very simple problems (where it works very well).

The only drawback of this approach is that the interface and the original Fortran source lie in different files,
which need to be kept in sync. This increases a bit the chances of forgetting to update the .pyf file if the Fortran
interface changes (adding a parameter, for example). However, the benefit of having explicit, clear control over
f2py’s behavior far outweighs this concern.

9.3.2. Choosing a default compiler. Set the FC VENDOR environment variable. This will then pre-
vent f2py from testing all the compilers it knows about.

9.3.3. Using Cf2py directives. For simpler cases you may choose to go the route of Cf2py directives.
Below are some tips and examples for this approach.

Here’s the signature of a simple Fortran routine:

subroutine phipol(j,mm,nodes ,wei ,nn,x,phi ,wrk)

implicit real *8 (a-h, o-z)

real *8 nodes (*),wei(*),x(*),wrk(*),phi(*)

real *8 sum , one , two , half

The above is correctly handled by f2py, but it can’t know what is meant to be input/output and what the
relations between the various variables are (such as integers which are array dimensions). If we add the following
f2py directives, the generated python interface is a lot nicer:

subroutine phipol(j,mm,nodes ,wei ,nn,x,phi ,wrk)

c

c Lines with Cf2py in them are directives for f2py to generate a better

c python interface. These must come _before_ the Fortran variable

c declarations so we can control the dimension of the arrays in Python.

c

c Inputs:

Cf2py integer check(0<=j && j<mm),depend(mm) :: j

128



englishCHAPTER 9. EXTERNAL LIBRARIES 9.3. F2PY

Cf2py real *8 dimension(mm),intent(in) :: nodes

Cf2py real *8 dimension(mm),intent(in) :: wei

Cf2py real *8 dimension(nn),intent(in) :: x

c

c Outputs:

Cf2py real *8 dimension(nn),intent(out),depend(nn) :: phi

c

c Hidden args:

c - scratch areas can be auto -generated by python

Cf2py real *8 dimension (2*mm+2),intent(hide ,cache),depend(mm) :: wrk

c - array sizes can be auto -determined

Cf2py integer intent(hide),depend(x):: nn=len(x)

Cf2py integer intent(hide),depend(nodes) :: mm = len(nodes)

c

implicit real *8 (a-h, o-z)

real *8 nodes (*),wei(*),x(*),wrk(*),phi(*)

real *8 sum , one , two , half

Some comments on the above:

• The f2py directives should come immediately after the ’subroutine’ line and before the Fortran variable
lines. This allows the f2py dimension directives to override the Fortran var(*) directives.

• If the Fortran code uses var(N) instead of var(*), the f2py directives can be placed after the Fortran
declarations. This mode is preferred, as there is less redundancy overall. The result is much simpler:

subroutine phipol(j,mm,nodes ,wei ,nn,x,phi ,wrk)

c

c Lines with Cf2py in them are directives for f2py to generate a better

c python interface. These must come _before_ the Fortran variable

c declarations so we can control the dimension of the arrays in Python.

c

c Inputs:

Cf2py integer check(0<=j && j<mm),depend(mm) :: j

Cf2py real *8 dimension(mm),intent(in) :: nodes

Cf2py real *8 dimension(mm),intent(in) :: wei

Cf2py real *8 dimension(nn),intent(in) :: x

c

c Outputs:

Cf2py real *8 dimension(nn),intent(out),depend(nn) :: phi

c

c Hidden args:

c - scratch areas can be auto -generated by python

Cf2py real *8 dimension (2*mm+2),intent(hide ,cache),depend(mm) :: wrk

c - array sizes can be auto -determined

Cf2py integer intent(hide),depend(x):: nn=len(x)

Cf2py integer intent(hide),depend(nodes) :: mm = len(nodes)

c

implicit real *8 (a-h, o-z)

real *8 nodes (*),wei(*),x(*),wrk(*),phi(*)

real *8 sum , one , two , half

Since python can automatically manage memory, it is possible to hide the need for manually passed ’work’
areas. The C/python wrapper to the underlying fortran routine will allocate the memory for the needed work
areas on the fly. This is done by specifying intent(hide,cache). ’hide’ tells f2py to remove the variable from the
argument list and ’cache’ tells it to auto-generate it.

In cases where the allocation cost becomes a performance problem, one can remove the ’hide’ part and
make it an optional argument. In this case it will only be generated if not given. For this, the line above should
be changed to:

129



9.3. F2PY englishCHAPTER 9. EXTERNAL LIBRARIES

Cf2py real *8 dimension(2*mm+2), intent(cache), optional, depend(mm) :: wrk

Note that this should only be done after proving that the scratch areas are causing a performance problem.
The cache directive causes f2py to keep cached copies of the scratch areas, so no unnecessary mallocs should be
triggered.

Since f2py relies on Numeric arrays, all dimensions can be determined from the arrays themselves and it is
not necessary to pass them explicitly.

With all this, the resulting f2py-generated docstring becomes:

phipol - Function signature:

phi = phipol(j,nodes,wei,x)

Required arguments:

j : input int

nodes : input rank-1 array(’d’) with bounds (mm)

wei : input rank-1 array(’d’) with bounds (mm)

x : input rank-1 array(’d’) with bounds (nn)

Return objects:

phi : rank-1 array(’d’) with bounds (nn)

9.3.4. Debugging. For debugging, use the –debug-capi option to f2py. This causes the extension modules
to print detailed information while in operation. In distutils, this must be passed as an option in the f2py options
to the Extension constructor.

9.3.5. Wrapping C codes with f2py. Below is Pearu Peterson’s (the f2py author) response to a question
about using f2py to wrap existing C codes. While SWIG provides similar functionality and weave is perfect for
inlining C, f2py seems to be an incredibly simple and convenient tool for wrapping C libraries.

Pearu’s response follows:
For example, consider the following C file:

/* foo.c */

double foo(double *x, int n) {

int i;

double r = 0;

for (i=0;i<n;++i)

r += x[i];

return r;

}

/* EOF foo.c */

To wrap the C function foo() with f2py, create the following signature file bar.pyf:

! -*- F90 -*-

python module bar

interface

real*8 function foo(x,n)

intent(c) foo

real*8 dimension(n),intent(in) :: x

integer intent(c,hide),depend(x) :: n = len(x)

end function foo

end interface

end python module bar

! EOF bar.pyf

(see usersguide for more info about intent(c)) and run

f2py -c bar.pyf foo.c

Finally, in Python:

> > > import bar

> > > bar.foo([1,2,3])

6.0

9.3.6. Passing offset arrays to Fortran routines. It is possible to pass offset arrays (like pointers to
the middle of other arrays) by using Numeric’s slice notation.

The print dvec function below simply prints its argument as ”print*,’x’,x”. We show some examples of how
it behaves with both 1 and 2-d arrays:

130



englishCHAPTER 9. EXTERNAL LIBRARIES 9.3. F2PY

In [3]: x

Out[3]: array([ 2.8, 3.4, 4.1])

In [4]: tf.print_dvec(x)

n 3

x 2.8 3.4 4.1

In [5]: tf.print_dvec ?

Type: fortran

String Form: <fortran object at 0x8306fe8>

Namespace: Currently not defined in user session.

Docstring:

print_dvec - Function signature:

print_dvec(x,[n])

Required arguments:

x : input rank-1 array(’d’) with bounds (n)

Optional arguments:

n := len(x) input int

In [6]: tf.print_dvec (x[1])

n 1

x 3.4

In [7]: tf.print_dvec (x[1:])

n 2

x 3.4 4.1

In [8]: A

Out[8]:

array([[ 3.5, 5.6, 8.2],

[ 2.1, 4.5, 1.2],

[ 6.3, 3.4, 3.1]])

In [9]: tf.print_dvec(A)

n 9

x 3.5 5.6 8.2 2.1 4.5 1.2 6.3 3.4 3.1

In [10]: A

Out[10]:

array([[ 3.5, 5.6, 8.2],

[ 2.1, 4.5, 1.2],

[ 6.3, 3.4, 3.1]])

In [11]: tf.print_dvec(A[1:])

n 6

x 2.1 4.5 1.2 6.3 3.4 3.1

In [12]: A[1:]

Out[12]:

array([[ 2.1, 4.5, 1.2],

[ 6.3, 3.4, 3.1]])

In [13]: A[1:,1:]

Out[13]:

array([[ 4.5, 1.2],

[ 3.4, 3.1]])

In [14]: tf.print_dvec(A[1:,1:])

n 4

x 4.5 1.2 3.4 3.1

9.3.7. On matrix ordering and in-memory copies. Numeric (which f2py relies on) is C-based, and
therefore its arrays are stored in row-major order. Fortran stores its arrays in column-major order. This means
that copying issues must be dealt with. Below we reproduce some comments from Pearu on this topic given in
the f2py mailing list in June/2002:

To avoid copying, you should create array that has internally Fortran data ordering. This is
achived, for example, by reading/creating your data in Fortran ordering to Numeric array
and then doing Numeric.transpose on that. Every f2py generated extension module provides
also function

has column major storage

131



9.3. F2PY englishCHAPTER 9. EXTERNAL LIBRARIES

to check if an array is Fortran contiguous or not. If has column major storage(arr)
returns true then there will be no copying for the array arr if passed to f2py generated
functions (assuming that the types are proper, of cource).

Also note that copying done by f2py generated interface is carried out in C on the raw
data and therefore it is extremely fast compared to if you would make a copy in Python, even
when using Numeric. Tests with say 1000x1000 matrices show that there is no noticable
performance hit when copying is carried out, in fact, sometimes making a copy may speed
up things a bit – I was quite surprised about that myself.

So, I think, you should worry about copying only if the sizes of matrices are really
large, say, larger than 5000x5000 and efficient memory usage is relevant. The time spent
for copying is negligible even for large arrays provided that your computer has plenty of
memory (>=256MB).

9.3.8. Distutils. Below is an example setup.py file which generates a Python extension module from
Fortran90 sources and a .pyf interface file generated by f2py and later fine tuned.

#!/usr/bin/env python

"""Setup script for F2PY -processed , Fortran based extension modules.

A typical call is:

% ./setup.py install --home =~/usr

This will build and install the generated modules in ~/usr/lib/python.

If called with no args , the script defaults to the above call form (it

automatically adds the ’install --home =~/usr’ options)."""

# Global variables for this extension:

name = "mwadap_tools" # name of the generated python extension (.so)

description = "F2PY -wrapped MultiWavelet Tree Toolbox"

author = "Fast Algorithms Group - CU Boulder"

author_email = "fperez@colorado.edu"

# Necessary sources , _including_ the .pyf interface file

sources = """

binary_decomp.f90 binexpandx.f90 bitsequence.f90 constructwv.f90

display_matrix.f90 findkeypos.f90 findlevel.f90 findnodx.f90 gauleg.f90

gauleg2.f90 gauleg3.f90 ihpsort.f90 invert_f2cmatrix.f90 keysequence2d.f90

level_of_nsi.f90 matmult.f90 plegnv.f90 plegvec.f90 r2norm.f90 xykeys.f90

mwadap_tools.pyf""".split()

# Additional libraries required by our extension module (these will be linked

# in with -l):

libraries = [’m’]

# Set to true (1) to turn on Fortran/C API debugging (very verbose)

debug_capi = 0

#***************************************************************************

# Do not modify the code below unless you know what you are doing.

# Required modules

import sys ,os

from os.path import expanduser ,expandvars

132



englishCHAPTER 9. EXTERNAL LIBRARIES 9.5. STANDALONE APPLICATIONS

from scipy_distutils.core import setup ,Extension

expand_sh = lambda path: expanduser(expandvars(path))

# Additional directories for libraries (besides the compiler ’s defaults)

fc_vendor = os.environ.get(’FC_VENDOR ’,’Gnu’).lower()

library_dirs = ["~/usr/lib/"+fc_vendor]

# Modify default arguments (if none are supplied) to install in ~/usr

if len(sys.argv)==1:

default_args = ’install --home =~/usr’

print ’*** Adding default arguments to setup:’,default_args

sys.argv += default_args.split() # it must be a list

# Additional options specific to f2py:

f2py_options = []

if debug_capi:

f2py_options.append(’--debug -capi’)

# Define the extension module(s)

extension = Extension(name = name ,

sources = sources ,

libraries = libraries ,

library_dirs = map(expand_sh ,library_dirs),

f2py_options = f2py_options ,

)

# Call the actual building/installation routine , in usual distutils form.

setup(name = name ,

description = description ,

author = author ,

author_email = author_email ,

ext_modules = [extension],

)

9.4. Others

boost, pyrex, cxx

9.5. Distributing standalone applications

py2exe, mcmillan installer

133





Bibliography

[1] Python Success Stories: 8 True Tales of Flexibility, Speed, and Improved Productivity. O’Reilly Associates, 2002.
[2] Python Success Stories Volume II: 12 More True Tales. O’Reilly Associates, 2005.
[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-

ling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[4] K. Arnold, J. G., and D. Holmes. Java(TM) Programming Language. Addison-Wesley Professional, 2005.
[5] J. W. Backus et al. Algol 60 — revised report on the algorithmic language. Communications of the ACM, 6(1):1–17,

January 1963.
[6] C. H. Barker and W. P. Healy. Statistical analysis of oil spill response options: A NOAA-U.S. Navy joint project. In

Proceedings of the International Oil Spill Conference, pages 883–890, 2001.
[7] P. Barrett, J.D. Hunter, and P. Greenfield. Matplotlib - A portable Python plotting package. In Astronomical Data

Analysis Software & Systems XIV., 2004.
[8] D. Beasley. Python Essential Reference. New Riders Publishing, 2nd edition, 2001.
[9] David Beazley. SWIG and automated C/C++ scripting extensions. Dr. Dobb’s Journal of Software Tools, 23(2):30,

32, 34–36, 100, February 1998.
[10] Thomas J. Bergin, Richard G. Gibson, and Richard G. Gibson. History of Programming Languages. Addison-Wesley

Professional, 1996.
[11] J.B. Buckheit and D.L. Donoho. Wavelets and Statistics, chapter WaveLab and Reproducible Research. Springer-

Verlag, 1995.
[12] A. Butterfield, V. Vedagiri, E. Lang, C. Lawrence, M. J. Wakefield, A. Isaev, and G. A. Huttley. Pyevolve: A toolkit

for statistical modelling of molecular evolution. BMC Bioinformatics, 5(1):1, 2004.
[13] P. F. Dubois, K. Hinsen, and J. Hugunin. Numerical Python. Computers in Physics, 10(3):262–267, May/June 1996.
[14] Paul F. Dubois and T.-Y. Yang. Scientific programming: Extending Python. Computers in Physics, 10(4):359–??,

???? 1996.
[15] Jr. Drake G. Van Rossum, F. L., editor. An Introduction to Python. Network Theory Ltd., 2003.
[16] A. Goldberg and D. Robson. Smalltalk 80 : The Language. Addison-Wesley Professional, 1989.
[17] Duane C. Hanselman and Bruce L. Littlefield. Mastering MATLAB 7. Prentice Hall, 2004.
[18] Jim Hugunin. Python and java - The best of both worlds. In In Proceedings of the 6th International Python Con-

ference, pages 11–20, 1997.
[19] JD Hunter, J Reimer, DM Hanan, KE Hecox, and VL Towle. Locating chronically implanted subdural electrodes

using 3-D rendering. Clinical Neurophysiology, 2005.
[20] Gavin A Huttley. Modeling the impact of DNA methylation on the evolution of BRCA1 in mammals. Mol Biol Evol,

21(9):1760–8, 2004.
[21] L. Ibáñez and W. Schroeder. The ITK Software Guide: The Insight Segmentation and Registration Toolkit. Kitware,

Inc., 2003.
[22] I. K. Kominis, T. W. Kornack, J.C.. Allred, and M. V. Romalis. A subfemtotesla multichannel atomic magnetometer.

Nature, 422(6932):596–599, April 2003.
[23] T. W. Kornack and M. V. Romalis. Dynamics of two overlapping spin ensembles interacting by spin exchange. Phys

Rev Lett, 89(25):253002, December 2002.
[24] A. Martelli. Python in a Nutshell. O’Reilly, 1st edition, 2003.
[25] A. Martelli and D. Ascher. Python Cookbook. O’Reilly, 1st edition, 2004.
[26] Peter Naur al. Revised report on the algorithmic language ALGOL 60. 6(1):1–17, January 1963.
[27] NOAA. TAP II 1.2 User Manual. National Oceanic and Atmospheric Administration, Hazardous Material Response

Division, Seattle, WA, 2000.
[28] John K. Ousterhout. Scripting: Higher level programming for the 21st century. IEEE Computer, 1998.
[29] H. Parker-Hall and C. H. Barker. Do trajectories belong in area plans? a new approach in california using the

trajectory analysis planner (TAP II). In Proceedings of the International Oil Spill Conference, pages 685–691, 2001.
[30] Fernando Pérez. IPython – an enhanced interactive Python shell, 2001. http://ipython.scipy.org.
[31] M. Pilgrim. Dive into Python. Apress, 1st edition, 2004.
[32] S. M. Ransom, J. W. T. Hessels, I. H. Stairs, P. C. C. Freire, F. Camilo, V. M. Kaspi, and D. L. Kaplan. Twenty-One

Millisecond Pulsars in Terzan 5 Using the Green Bank Telescope. Science, 307:892–896, February 2005.

135



englishCHAPTER 9. BIBLIOGRAPHY

[33] S. M. Ransom, V. M. Kaspi, R. Ramachandran, P. Demorest, D. C. Backer, E. D. Pfahl, F. D. Ghigo, and D. L.
Kaplan. Green Bank Telescope Measurement of the Systemic Velocity of the Double Pulsar Binary J0737-3039 and
Implications for Its Formation. Astrophysical Journal, 609:L71–L74, July 2004.

[34] S. Rosen. Programming Systems and Languages, chapter Programming Systems and Languages–A Historical Survey.
McGraw-Hill, New York, 1967.

[35] G. Van Rossum. Python Library Reference. To Excel Inc, 2001.
[36] M.F. Sanner. A component-based software environment for visualizing large macromolecular assemblies. Structure,

13:447–462, 2005.
[37] M.F. Sanner. Encyclopedia of Genomics, Proteomics and Bioinformatics, chapter Using the Python Programming

Language for Bioinformatics. John Wiley & Sons, Ltd, 2005.
[38] W. Schoeder, K. Martin, and B Lorense. The Visualization Toolkit: An Object Oriented Approach to 3D Graphics.

Kitware, Inc., 3rd edition, 2002.
[39] G. Stein. Python at Google. In Pycon2005, 2005.
[40] M Strous. Python - executable pseudocode. PC Update, 2001.
[41] B. Stroustrup. The C++ Programming Language. Addison-Wesley Professional, 3rd edition edition, 2000.
[42] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley Professional, 1994.
[43] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Programming Guide: The Official Guide to Learning OpenGL.

Addison Wesley, 3rd edition, 1999.

136


	Chapter 1. Python for Scientific Computing
	1.1. Who is using Python?
	1.2. Advantages of Python
	1.3. Mixed Language Programming
	1.4. Getting started
	1.5. An Introduction to Arrays
	1.6. Exercises

	Chapter 2. A whirlwind tour of python and the standard library
	2.1. Hello Python
	2.2. Python is a calculator
	2.3. Accessing the standard library
	2.4. Strings
	2.7. The basic python data structures
	2.9. The Zen of Python
	2.11. Functions and classes
	2.13. Files and file like objects

	Chapter 3. A tour of IPython
	3.1. Main IPython features
	3.2. Effective interactive work 
	3.3. Access to the underlying Operating System
	3.4. Access to an editor
	3.5. Customizing IPython
	3.6. Debugging and profiling with IPython 
	3.7. Embedding IPython into your programs 
	3.8. Integration with Matplotlib

	Chapter 4. Introduction to numerix arrays
	Chapter 5. Introduction to plotting with matplotlib / pylab
	5.1. A bird's eye view
	5.2. A short pylab tutorial
	5.3. Set and get introspection
	5.4. A common interface to Numeric and numarray
	5.5. Customizing the default behavior with the rc file
	5.6. A quick tour of plot types
	5.7. Images
	5.8. Customizing text and mathematical expressions
	5.9. Event handling: Tracking the mouse and keyboard

	Chapter 6. A tour of SciPy
	6.1. Introduction
	6.2. Basic functions in scipy_base and top-level scipy
	6.3. Special functions (special)
	6.4. Integration (integrate)
	6.5. Optimization (optimize)
	6.6. Interpolation (interpolate)
	6.7. Signal Processing (signal)
	6.8. Input/Output
	6.9. Fourier Transforms
	6.10. Linear Algebra
	6.11. Statistics
	6.12. Interfacing with the Python Imaging Library
	6.13. Some examples

	Chapter 7. 3D visualization with MayaVi
	7.1. Introduction
	7.2. Getting started
	7.3. Using MayaVi
	7.4. Using MayaVi from Python
	7.5. Scripted examples

	Chapter 8. 3D visualization with VTK
	8.1. Hello world in VTK
	8.4. Working with medical image data

	Chapter 9. Interfacing with external libraries
	9.1. weave
	9.2. swig 
	9.3. f2py 
	9.4. Others
	9.5. Distributing standalone applications

	Bibliography

